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Summary

The first two years research work has advanced the inversion-based guidance theory for:

• systems with non-hyperbolic internal dynamics;

• systems with parameter jumps;

• systems where a redesign of the output trajectory is desired; and

• the generation of recovery guidance maneuvers.

Non-hyperbolic Internal Dynamics
Output tracking for nonminimum phase nonlinear systems with non-hyperbolic and near

non-hyperbolic internal dynamics was developed. This approach integrated stable inversion

techniques, that achieve exact-tracking, with approximation techniques, that modify the

internal dynamics to achieve desirable performance [1]. Such modification of the internal

dynamics was used (a) to remove non-hyperbolicity which is an obstruction to applying

stable inversion techniques and (b) to reduce large preactuation times needed to apply stable

inversion for near non-hyperbolic cases. This approach has been extended to nonlinear

systems [2].

Systems with Parameter Jumps
The exact output tracking problem for systems with parameter jumps was considered [3].

Necessary and sufficient conditions were derived for the elimination of switching-introduced

output transient. While previous works had studied this problem by developing a regula-

tor that maintains exact tracking through parameter jumps (switches), such techniques are,

however, only applicable to minimum-phase systems. In contrast, our approach is also appli-

cable to nonminimum-phase systems and leads to bounded but possibly non-causal solutions.

In addition, for the case when the reference trajectories are generated by an exosystem, we

developed an exact-tracking controller which could be written in a feedback form. As in

standard regulator theory, we also obtained a linear map from the states of the exosystem to

the desired system state, which was defined via a matrix differential equation. The constant

solution of this differential equation provided asymptotic tracking, and coincided with the

feedback law used in standard regulator theory.

Work has been initiated to connect this work to the control of hybrid systems.

Output Trajectory Redesign
We studied the optimal redesign of output trajectory for linear invertible systems [4, 5].

The specified output trajectory uniquely determines the required input and state trajectories,

that are found through inversion. These input-state trajectories exactly track the desired

output, however, they might not meet acceptable performance requirements. For example,

the required inputs might cause actuator-saturatlon during an exact tracking maneuver, for

example, in the flight control of conventional take-off and landing aircraft. In such situations,

a compromise is desired between the tracking requirement and other goals like reduction of

internal vibrations and prevention of actuator saturation - the desired output trajectory





needs to be redesigned. We posed the trajectory redesign problem as an optimization of a

general quadratic cost function, and solved it in the context of linear systems.

This theory is currently being extended to nonlinear systems, and will be applied to (a)

the flight control of conventional take-off and landing aircraft and (b) to the guidance of the

landing maneuvers for the Space Shuttle. Results will be submitted to the 1998 CDC and

the 1998 AIAA Conference on Guidance and Navigation (and to the related journals).

Recovery Guidance Maneuvers for Linear Systems
We studied the development of recovery guidance maneuvers for linear systems which

may have actuator-saturation or actuator rate-limits [6]. Note that if a fixed regulator

is used to stabilize a desired state trajectory (guidance law), large initial tracking errors

can lead to input saturation, which can result in performance deterioration. A method to

modify the guidance law for recovering state-trajectory tracking (without violating input and

state constraints) was developed. Although it may be usually feasible to find a satisfactory

recovery guidance maneuver for a given initial tracking error, online development of recovery

guidance maneuvers may not be computationally tractable. A technique was also developed

to use precomputed recovery guidance maneuvers (for a finite set of initial tracking errors)

to generate recovery guidance maneuvers for other initial errors. The technique was applied

to an illustrative example with input-magnitude-limits and input-rate-limits.

The convexity arguments used in this work, along with our results for switched systems,

will form the basis of future research into hybrid systems.
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Output Tracking with Nonhyperbolic and Near Nonhyperbolic
Internal Dynamics: Helicopter Hover Control

Santosh Devasia*

University of Utah, Salt Lake City, Utah 84112

A technique to achieve output tracking for nonminimum phase linear systems with nonhyperbolic and near
nonhyperbolic Internal dynamics is presented. This approach integrates stable inversion techniques, which achieve
exact tracking, with approximation techniques, which modify the internal dynamics, to achieve desirable perfor-
mance. Such modification of the internal dynamics is used 1) to remove nonhyperbolicity, which is an obstruction to
applying stable inversion techniques, and 2) to reduce large preactuation times needed to apply stable inversion for
near nonhyperbolic cases. The method is applied to an example helicopter hover control problem with near nonhy-
perbolic internal dynamics for illustrating the tradeoff between exact tracking and reduction of preactuation time.

I. Introduction

RECISION output tracking controllers are needed to meet in-creasingly stringent performance requirements in applications
such as flexible structures, aircraft and air traffic control, robotics,

and manufacturing systems. Although perfect tracking of mini-

mum phase systems is relatively easy to achieve, output tracking
of nonminimum phase systems tends to be more challenging due
to fundamental limitations on transient tracking performance. _This

poor transient performance has been mitigated by using preactua-
tion in the stable inversion-based approaches for nonminimum phase
systems? -_ However, the required preactuation time (during which

most of the preactuation control effort is required) is large if the zeros
of a linear system that lie on the open right-half of the complex plane
are close to the imaginary axis. In the limiting case, with the zeros
on the imaginary axis (nonhyperbolic internal dynamics), presently
available inversion-based techniques fail because the preactuation

time needed becomes infinite. We present a design technique for

output tracking of linear nonminimum phase systems, which have
nonhyperbolic and near nonhyperbolic nonminimum phase internal

dynamics. This technique is then applied to an example helicopter

hover control problem, and simulation results are presented.

Output tracking has a long history marked by the development

of regulator theory for linear systems by Francis and Wonham 6
and the generalization to the nonlinear case by Isidori and Byrnes. 7
These approaches asymptotically track an output from a class of

exosystem-generated outputs. Further, the lsidori-Byrnes regulator
has been extended in Refs. 8 and 9 and computational issues have

been studied in Refs. 10 and 1 1. Although nonlinear regulator design

is computationally difficult, the linear regulator is easily designed

by solving a manageable set of linear equations. A problem, how-

ever, with the regulator approach is that the exosystem states are
often switched to describe the desired output; this leads to transient

tracking errors after the switching instants. Such switching-caused
transient errors can be avoided by using inversion-based approaches

to output tracking. 4'_2 Thus, it is advantageous to use inversion-

based output tracking when precision tracking of a particular output

trajectory is required.
Inversion, which is key to our approach, was restricted to

causal inverses of minimum phase systems in the early works by
Silverman 13 and Hirschorn I_ because these approaches lead to un-

bounded inverses in the nonminimum phase case. Di Benedetto

and Lucibello _5 considered the inversion of time varying nonmini-

mum phase systems with a choice of the system's initial conditions.

Instead of choosing initial conditions, preactuation was used by

Received Oct. 2, 1996; revision received Jan. 14, 1997; accepted for pub-
lication Jan. 28, 1997. Copyright © 1997 by the American Institute of Aero-
nautics and Astronautics, Inc. All rights reserved.
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noncausal stable inversion techniques developed in Refs. 2-5 and 16.

Such noncausal inverses, which require preactuation, have been suc-
cessfully applied to the output tracking of flexible structures _7._ and

aircraft and air traffic control. ,9.2o However, the fundamental limita-

tion of presently available inversion schemes is that they fail if the in-
ternal dynamics is nonhyperbolic. Even when the internal dynamics

is hyperbolic, if the right-half-plane zeros of the system are close to

the imaginary axis (the near nonhyperbolic case), then the required

preactuation time tends to become unacceptably large, in summary,

output tracking remains a challenge for nonminimum phase systems

with nonhyperbolic or near nonhyperbolic internal dynamics.

There are several approximation-based output tracking tech-
niques, where the central philosophy is to replace the internal dy-

namics with a dynamics that provides satisfactory behavior, and

then to develop the controller based on the altered system? _-23 The

technique most relevant to this paper is developed by Gopalswamy

and Hedrick, 23 where trajectory modifications are considered to sta-

bilize the internal dynamics. This technique, however, requires hy-

perbolicity of the internal dynamics tor computational purposes.

The development of computational techniques for stable inversion

(e.g., Ref. 16) motivates the present integration of the stable inver-

sion scheme with approximation techniques, especially for systems

with nonhyperbolic internal dynamics where the existing stable in-

version techniques fail. However, instead of stabilizing the unstable
internal dynamics, we only aim to modify the nonhyperbolic behav-

ior with a small perturbation of the internal dynamics. Additionally,

in nonminimum phase systems with near nonhyperbolic internal dy-

namics, the present approach allows a tradeoff between the precision

tracking requirement and the amount of preactuation time needed

to apply the stable inversion-based output tracking technique.

The approximate inversion-based technique is developed in
Sec. II, and the technique is applied to a helicopter hover control

example in Sec. III, where simulation results are discussed. Conclu-
sions are in Sec. IV.

II. Stable Inversion

A. Inversion-Based Output Tracking Scheme
Here we describe how the inversion approach is used to develop

output tracking controllers. Consider a linear system described by

Jc(t) = Ax(t) -+-Bu(t), y(t) = Cx(t) (1)

which has the same number of in puts as outputs, u (t), y (t) 6 _lct', and

x(t) _ !)_. Lety,t(.) be the desired output trajectory to be tracked.

Then in the inversion-based approach, first, we find a nominal input-

state trajectory [utt ('), xrcf(')] that satisfies the system equations (I)

and yields the desired output exactly, i.e.,

JCref(t) = AXref(t) + Buff(t) I
¢

yd(t) = Cx,._l(t) J
Vt 6 (-oct, oc0 (2)
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Fig. 1 Control scheme.

Second, we stabilize the exact-output yielding state trajectory x_f(.)

by using state feedback (see Fig. 1). Thus, x(t) --+ Xrer(t) andy(t)

ya(t) as t _ cx_, and output tracking is achieved. It is noted that

in this output tracking scheme, the reference state trajectory x_f(.)

and the feedforward input urr(-) are computed off-line. Whereas
stabilization of the reference state trajectory can be easily achieved

through standard techniques 24 such as state feedback of the form
K[x(t) -x_dt)], the main challenge is to find the inverse input-state

trajectory lute-(.), x,:f(.)], especially for systems with nonminimum

phase dynamics. This paper addresses the off-line computation of
the inverse input-state trajectory for a given desired trajectory, ya (.).

B. Internal Dynamics
In this subsection, it is shown that finding the inverse input-state

trajectory is equivalent to finding bounded solutions to the system's

internal dynamics. Let the linear system ( l ) have a well-defined vec-
tor relative degree, r := [rt, r2 ..... r,]. Then the output's deriva-

tives are given as 25

drk Y"--'--(_= Ck Ar*x + C_ A rk l BU (3)
dtrk

where C, is the kth row of C and 1 < k < p. In vector notation, let

Eq. (3) be rewritten as

where

ylr)(t) = Axx(t) + B_u(t)

r T

y(r) :: r £vl dr2y2 ... 'Y'I
L dtr' dtr2 dtrp .J

IAx :: . By :: .

LC,,A',,j LGA_,,-'S_

(4)

and By is invertible because of the well-defined relative degree as-
sumption. Equation (4) motivates the choice of the control law of
the form

un-(t) = B;' [y:/)(t)- Axx(t)] (5)

for all t E (-oo, o_). Substituting this control law in Eq. (4), it is

seen that exact tracking is maintained, i.e.,

y(r)(t) = y_/)(t)

To study the effect of this control law, consider a change of coordi-
nates T such that 25

n(t)J = Tx(t)

where _(t) consists of the output and its time derivatives

drt -1 d,.2- I_(t) := Yl, J't ..... dt_l_ly----_, Y2, Yz ..... dtr2_Jy 2,

drp - 1 1

.... Yv, .')l'..... d.''-'-_,, J

The system equation (1) can then be rewritten in the new coordinates
as

_(t) = ,41_" + ,_2r/+/}_u (6)

flU) = A3¢ + _i4n + k2u (7)

where

._ := r-'Ar := ,_3 .'L and B := B2

In the new coordinates, the control law for maintaining exact track-

ing [Eq. (5)1 can be written as

u(t) = B;' [y(a_)(t) -- A¢Ca(,) - A,,r/(,)] (8)

where

A¢] := A'T- 1A_I

Note that the desired ¢(.) is known when the desired output tra-

jectory Yd(-) and the output's time derivatives are specified. This
desired (;(.) is defined as (;a('). Inasmuch as the control law was

chosen such that exact tracking is maintained, y(r_ (t) = y Cf)(t), we

also have _(t) = _,/(t), and Eqs. (6) and (7) become

_(t) = _a(t) (9)

" -I (_) Aor/(t)] (10)il(t) = ,43(, + ,44rl + B2By [Ya (t) - A¢(_a(t) --

This is the inverse system, and in particular, Eq. (10) is the internal

dynamics. Solving the internal dynamics is key to finding the inverse

input-state trajectories. If a bounded solution r/a(.) to the internal
dynamics (10) can be found, then the feedforward input can be found

through Eq. (8) as

urr(t) = B;i[y_[)(t) - AC¢,,(t) - a0r/,/(t)] (11)

and the reference trajectory can be found as

xref(t) = T-' [¢,,(t)]
Ln,(t)J

Thus, a bounded solution to the internal dynamics (10) is required

to find the inverse and to apply the output tracking scheme shown

in Fig. 1.

C. Modified Internal Dynamics
Standard inversion schemes 13:4 that integrate (forward in time)

the internal dynamics (10) lead to unbounded solutions because

the internal dynamics is unstable for nonminimum phase systems.

Noncausal inversion (e.g., Ref. 4) leads to a bounded but noncausal

solution to the internal dynamics. Such stable inversion techniques
are, however, not applicable to systems with nonhyperbolic internal

dynamics. In this subsection a compromise between stable inversion

and approximation-based inversion schemes is proposed. The key is

to modify the internal dynamics by giving up exact output tracking,

enough to remove the nonhyperbolicity, and then to apply stable
inversion. Note that the system zeros are not being modified by

output feedback (which is impossible): rather, the inverse system

is perturbed to a nearby system, which has better behaved internal

dynamics, for stable inversion. The difference between the proposed

technique and other approximation techniques is that the internal

dynamics is perturbed only to remove the nonhyperbolicity and not
to stabilize the entire internal dynamics.

To change the nonhyperbolicity of the internal dynamics, an extra

term, v(t), is added to the control law (8) as follows:

un.(t) = By' [yl_)(t) - Ace(t) - A,rl(t) + v(t)] {12)
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Withthismodifiedcontrollaw,theinversesystem[Eqs.(9)and(10)]
becomes

[..- _

d
(13)

P _

Tt Um)J Lrl(tlj

where e¢ (t) := ((t) - (a (t) is the error in the output and the output's
derivatives,

[ . 0 ] .,-1"_= (,43 --/}AIB_-IA_) (A4 - BzBy'An) ' Gv = L/}2B,:I j

[ o o ] rev = (,_3 - /}2OylA() /}2By -1 ' Ya(t) = Lye;)(,)j

/i_ := diag[AI, A2 ..... Ap]

where each Ai is an r, x ri zero-matrix with ones on the elements

above the main diagonal (for all 1 < i < p).

Assuming that the original system (A, B) is controllable, we also

have (S, Gt,) controllable, and hence there exists a feedback of the
form

v(t) = F[e¢(t) 1
L,W)J (14)

such that the modified inverse system (13) is hyperbolic; i.e,, all

poles on the imaginary axis are moved. Note that this change to

an hyperbolic system can be achieved through arbitrarily small F

because nonhyperbolicity is not a structurally stable property. The
hyperbolic system

4re' "ldtLo(t)j = (;S+G_F) +GyYj(t)

:= sle¢(t)l + e_ra(t) (15)
krl(r)j -

is the modified inverse system. This modification of the internal

dynamics can also be used to move unstable poles of the inverse

system that may be close to the imaginary axis for reducing the
required preactuation time. Next, stable inversion of the modified

inverse system is carried out:

D, Computation of the Inverse

We begin by decoupling the modified inverse system (15) into

stable (z.,.) and unstable (z.) subsystems. Because the modified in-

verse system is hyperbolic, there exits a decoupling transformation

U such that the modified inverse system (15) can be written as

z,(t) = S_z.,.(t) + G.,Yd(t), z..(t) = S.z.(t) + G.Yd(t)

(16)
where

z(t) := Lz.(t)J Lo(')J (17)

To find bounded solutions to the unstable inverse systems, the

boundary conditions that z,(-oo) = 0 and z,(cx_) = 0 are applied
to Eq. (16). This leads to unique bounded solutions to the modified
inverse system by flowing the stable subsystem forward in time and

flowing the unstable system backward in time as

f,z,..a(t) = eS_U-_)G, Yd(r)dr Vt e (-oc, oo)
OC

(18)
Zu,d(t) : -- e s"It rlGuYa(r)dr Vt E (--_,oe)

This completes the technique. To summarize, the bounded solu-

tion (18) is used to find the reference state trajectory asx_f(t) =

T- i U _Zd(t) and to find the feedforward input urr(.) from Eq. (12).
This inverse, [Ufr(.),x_r(.)], is then used in the control scheme

shown in Fig. 1 to obtain output tracking.

E. Preactuation Time and Unstable Poles of the Inverse System

The connection between the amount of preactuation time required

to apply the inversion-based feedforward input and the unstable

poles of the modified inverse is established in the following Lemma.

Lemma:

1) Let the support of Ya(') be contained in [to, oc) for some t(j.

2) Let all of the unstable poles of internal dynamics represented

by the eigenvalues of S, lie to the right, in the complex plane, of the
line Re(s) = a for some positive or.

3) Let IIG, Yd(')II_ < f,.
Then there exists M such that Ilun-(t)ll_ < Me _u-'°l for all time

before the start of the maneuver, t < t_).

Proof" From condition 2 of the Lemma, there exists a positive
constant Ms, such that

lie's,'"ll < Ms: vt<r (19)

Then for all t < to,

IluMt)ll_ = IlB;'[y_dr)(t)- Ace(t)- Znrl(t ) + v(/)] [[_

from Eq. (12)

= [JBT't-A,¢ - a,rl(t)+ v(,)lll_
from condition 1 of Lemma

0

= (IOB_,A,--B_IAn] +F)re'(t)lkrt(t)j

from Eq. (14) and condition 1 of Lemma

._ AuVe, (t)]
'- krl(t) j

< IIAull,_ re'(t)l- L'o(t)J

< IIAulI_,IIU-'II_ / z'(t)]
- Lz.(t)J _ from Eq. (17)

= IIAulI_IIU-' II_llz,(t)ll,_

because z,(t) = 0 for all t < t0

= [[AuII_IIU Zll,_ eS_('-_)G,Ya(r)dr

from Eq. (18)

f)oc r)G, Yd(r)dr
= IIAulI_IIU-I I1_ eS, U -

OO

from condition 1 of Lemma

< flMs. IIAuII_IIU-J[I_ e"t'-_) dr

from Eq, (19) and condition 3 of the Lemma. Integrating the pre-
ceding expression, we get

Ilu_(t)ll_ < (_gs,/_)llAull_llU-'ll_e_U-'o_

:= Me_U-r.)

which concludes the proof.

The Lemma states that the preactuation input tends to zero expo-
nentially, as we go back in time from the start of the maneuver at to.

The rate at which the preactuation becomes zero can be increased

by moving the unstable poles of the modified inverse away from the

imaginary axis at the expense of exact output tracking. The tradeoff

between exact tracking of the desired output and reduction of the

preactuation time is illustrated in the following example.

III. Example: Helicopter Hover Control

Here, we apply the output-tracking technique to the hover con-
trol of a Bell 205 helicopter, which has near nonhyperbolic unstable
internal dynamics. We consider one of the cases studied in Ref. 26,

wherein the aircraft dynamics was trimmed at a nominal 5-deg pitch

attitude, with a midrange weight and a midposition center of grav-
ity and operating in-ground effect at near sea level. The linearized
model is given as 26'27

= Ax + Bu (20)
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where
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0 0.03 0.18 -0.01

-0.10 -0.39 0.09 -0.10

0.01 -0.01 -0.19 0

0.02 0 -0.41 -0.05

0.03 -0.02 -0.88 -0.04

-0.01 -0.02 -0.06 0.07

0 0 1 0

0 0 0 0

-0.42 0.08 -9.81 0

-0.72 0.68 0 0

0.23 0.04 0 0

-0.27 0.27 0 9.81

-0.57 0.14 0 0

-0.32 -0.71 0 0

0 0 0 0

1 0 0 0

(21)

n

0.08 0.13 0 0

-1.17 0.04 0 0.01

0 -0.07 0 0.01

-0.04 0 0.11 0.19

-0.04 0 0.22 0.17

0.17 0 0.03 -0.47

0 0 0 0

0 0 0 0

(22)

"U-

W

O
V

x = (23)
P

R

0

__.

where U is forward velocity, W vertical velocity, Q pitch rate, V

lateral velocity, P roll rate, R yaw rate, 0 pitch attitude, and _b roll

attitude, and

I_c

I o4
u = (24)

I 6A

L..O[

where 3c is collective, 8R longitudinal cyclic, 3a lateral cyclic, and

3e tail rotor collective.

It is noted that the helicopter's actual dynamic behavior differs

because of modeling errors such as nonlinearities and unmodeled

dynamics. In output tracking control schemes that depend on the
model, such modeling errors need to be corrected through feed-

back in the control scheme (see Fig. 1). in particular, modeling

errors can be compensated by robust stabilization of the reference

state trajectory (see, for example, Ref. 26). The goal is to develop
inversion-based feedforward and reference state trajectories for use

in the control scheme shown in Fig. I. In the following, we apply

the inversion technique to control the helicopter's forward, lateral,

and vertical velocities and its yaw rate. The forward velocity and the

yaw rate are to be kept at zero, and the desired profiles of lateral and
vertical velocities and accelerations are as shown in Figs. 2 and 3.

A. Internal Dynamics
To find the internal dynamics, we begin with a change in the

coordinates. Let _"be defined as the outputs

_(t) :=

and let 0 be the remaining states

U(t)-]

W(t) I
V(t) [
R(t)_l

(25)

FQ(t)l

/0(*)/
r/(t) := /P(t)/ (26)

L_'(t)J

•z .................................. \i

_0.05 _ i i
-5 0 5

Fig. 2

time (s)

Desired lateral and vertical velocity profile.

10
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Fig. 4 Lateral and vertical velocity achieved by the inverse reference state trajectory: ..... , exact-tracking case without modification of the internal

dynamics and ---, with modification.

In the (if, r/) coordinate system, given by

1 0 0 0 0 0 0 0"

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

[-_(t)-[ 0 0 0 0 0 1 0 0
/ |
Ln(t)J o o 1 o o o o o

0 0 0 0 0 0 1 0

0 0 0 0 I 0 0 0

0 0 0 0 0 0 0 1

:= Tx(t)

the system equations can be rewritten as

O(t)J Lr/(t)J + TBu(t)

:=[A: A2]C¢(t)]A4JLw(t)j+[BB:] u(t)

x(t)

(27)

(28)

Given a desired output trajectory and the desired output's time
derivatives, [_,i ('), _d (')], the exact output tracking control law (see
Sec. II.D) is found from Eq. (28) as

u_(t) = B?l[_d(t) -- Al_a(t) - A2'r/(t)] (29)

With this control law, the inverse system becomes [from Eq. (28)]

_(t) : _a(t) (30)

//(t) = A4r/(t) --I- A3ff(t) ± B2u(t)

= [A4 - B2B?IA2] rl(t)+ B2B('[(,(t) - al(_a(t)]

:= A_rl(t) + B2B_l[(d(t) - Alga(t)] (31)

The problem is solved by finding a bounded solution to the internal

dynamics (31). However, the bounded solution found through stable

inversion is noncausal and could require a large preactuation time if

the poles of the internal dynamics are unstable and lie close to the

imaginary axis in the complex plane. For this particular example,

there are two such complex conjugate poles near the imaginary axis,

0.0425 ± 4.3055i. We modify the exact tracking control law (29) to
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• .., without modification of internal dynamics and ---, with modification.

shift these poles away from the imaginary axis to 2 4- 4.3055i• This
is described next.

B. Modified Inverse System

Following the approach described in Sec. II.C, we modify the
internal dynamics by adding a term v(t) to the control law (29) to
obtain

Uff(t) : B_n[_a(t) -- Al_(t) -- A2'rl(t) + v(t)] (32)

Substituting this control law into Eqs. (30) and (31), the modified
inverse system is obtained as

['_(')l = [ 0 OlCe_'(t)l [ lB Iv(t)i?(t).J (A3-B2Bi-'A,) A,JLr/(t) j + B2 i-'

I 0 0+ (A3--B2B?tA,) B2B(' L4a(t)J

:= _e,(t) l
Lrt(t)J + G_v(t) + GyYa(t) (33)

where e_(t) := (_(t) - (_a(t). The poles of the inverse system can
be moved to any desired location by using the control v(t) because
iS, G_.) is controllable. However, such modifications, aimed at re-
ducing preactuation time, will also lead to a loss of precision in
output tracking. This tradeoff between the reduction of preactua-
tion time and the loss of precision in tracking is illustrated through
simulation.

C. Simulation Results and Discussion

Two sets of simulations were performed. First, stable inversion
was applied to the original system, which leads to exact output
tracking inverse input-state trajectories. Second, simulations were
performed when the unstable poles of the inverse system are moved

from 0.0425 5= 4.3055i to 2 4- 4.3055i for reducing the amount of

preactuation time required. Further, the inverse system also has four
poles at the origin, corresponding to four pure integrators for [e_(.)]
dynamics, which were moved to -1, -2, -3, and -4 for stability
of the numerical integration scheme.

Figures 2 and 3 show the desired output trajectories for the lateral
and vertical motions (corresponding to unit displacements in the
two directions), while the forward velocity and yaw rate were to be
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maintained at zero; the maneuver starts at time t = 0. Figures 4 and 5

show the output trajectories achieved by the inverse state trajeclory

xr_l(.), which is to be used as a reference trajectory in the feedback

scheme shown in Fig. 1. The corresponding feedforward inputs are

shown in Figs. 6 and 7. Note here that the feedforward inputs are

nonzero before the start of the maneuver, i.e., time t < 0, and hence

preactuation is required.

Figures 4 and 5 show that exact output tracking reference state

trajectories can be found, even when the internal dynamics is un-

stable, through the stable inversion approach. The stable inversion

technique yields bounded solutions to the unstable internal dynam-

ics, i.e., the pitch and roll motions are bounded, as shown in Fig. 8.

However, the feedforward input found through exact inversion re-

quires substantial preactuation time, as shown in Figs. 6 and 7, i.e.,

the preactuation remains nonzero for a significant time before the

start of the maneuver at t = 0. Figure 9 shows that about 30 s of

preactuation is needed to apply the inverse of the original system for

output tracking; in contrast, modification of the internal dynamics

reduces the preactuation needed from 30 to 1 s (see Fig. 9). As seen

in Figs. 4 and 5, the output trajectories are still tracked well by the

modified inverse. Further, this substantial reduction in preactuation

time is achieved with similar control efforts and with similar roll

and pitch motions (see Figs. 6-8). Thus, the approach presented

here allows a tradeoffbetween precision tracking and the amount of

preactuation that is acceptable. Future work will generalize the re-

suits to nonlinear nonminimum phase systems with nonhyperbolic

internal dynamics.

IV. Conclusions

A technique to achieve output tracking lor nonminimum phase

linear systems with nonhyperbolic and near nonhyperbolic inter-

nal dynamics was presented. This approach is an integration of

the stable inversion technique that aims at exact tracking with

the approximation approach that modifies the internal dynamics

to achieve desirable perlbrmance. The method was applied to an

example helicopter hover control problem to illustrate the effects

of modifying the internal dynamics, it was shown that substantial

reduction in preactuation time is possible by giving up some of the

precision in tracking, thus making the stable inversion approach

viable for practical application.
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1 Introduction

Precisionoutput trackingcontrollersareneeded to meet increasinglystringentperformancerequirements

in applicationslikeflexiblestructures,aircraftguidance,robotics,and manufacturingsystems.While ex-

acttrackingofminimum phasesystemsisrelativelyeasyto achievethroughapproacheslikeinput-output

linearization[1],outputtrackingofnonminimum phasesystemstendstobe more challengingdue tofun-

damentalperformancelimitationson transienttrackingperformance [2I.Thispoortransientperformance

has been mitigatedby usingpre-actuationinthe stable-inversionbased approaches[3,4]. However, the

preactuationtime(duringwhich mostofthepreactuationcontroleffortisrequired)dependson theunstable

polesofthelinearizedinternaldynamics- thepreactuationtimeincreasesastheunstablepolesapproachthe

imaginaryaxis.Inthelimitingcase,withthepoleson theimaginaryaxis(nonhyperbolicinternaldynamics),
presentlyavailableinversion-basedtechniquesfailbecausethe preactuationtimeneeded tendsto become

infinite.The presentwork extendspreviousresultsforlinearsystemsin[51tooutputtrackingofnonlinear

nonminimum phasesystems,whichhavenonhyperbolicinternaldynamics.

Output trackinghas a longhistorymarked by thedevelopmentofregulatortheoryforlinearsystems

by Francisand Wonham [6]and thegeneralizationto thenonlinearcaseby Byrnesand Isidori[7].These
approachesasymptoticallytrackan outputfroma classofexosystem-generatedoutputs.Further,extensions

tothe Byrnes-Isidoriregulatorhave beendescribedin[8].The main problemwiththe applicationofthese

techniquesto the output trackingof nonlinearsystemsiscomputational.While the linearregulatoris

designedbysolvingamanageablesetoflinearequations,thenonlinearregulatordesignrequiresthenontrivial

solution of a first order partial differential algebraic equation [9, 10]. In contrast, inversion-based approaches
avoid this computational difficulty and trade it to solve the exact tracking problem for a single desired
output trajectory rather than solve the asymptotic tracking for a class of outputs. Another problem with
the regulator approach is that the exosystem states are often switched to describe the desired output - this
leads to transient tracking-errors after the switching instants. Such switching caused transient errors can
be avoided by using inversion-based approaches to output tracking [3, 11]. Thus, it is advantageous to use
inversion-based output tracking when precision tracking of a particular output trajectory is required.

Inversion, which is key to our approach, was restricted to causal inverses of minimum phase systems in
the early works by Silverman and by Hirschorn (e.g., [12, 13]) because these approaches lead to unbounded
inverses in the nonminimum phase case. Di Benedetto and Lucibello [14] considered the inversion of time
varying nonminimum phase systems with a choice of the system's initial conditions. Rather than choose

initial conditions, preactuation was used by noncausal stable inversion techniques developed in [3, 4, 15].
Such noncausal inverses, which require preactuation, have been successfully applied to the output tracking
of flexible structures [16, 17], and aircraft and air traffic control [4, 18]. There is, however, a fundamental
limitation to the presently available inversion techniques - they are only applicable if the internal dynamics is
hyperbolic, and inversion-based output tracking has been a challenge for systems with nonhyperbolic internal
dynamics.

Although Huang [8] has proposed some sufficient conditions for developing a regulator for systems with
non-hyperbolic internal dynamics, the regulator design remains computationally difficult. There are also
several approximation based output tracking techniques, where the central philosophy is to replace the
internal dynamics with a dynamics that provides satisfactory behavior, and then to develop the controller
based on the altered system [19, 20, 21]. The techniques most relevant to this paper are developed by

Gurumoorthy and Sanders [19], and by Gopalswamy and Hedrick [21] - output redefinition (or modification)
is used in these to approximate the unstable internal dynamics with a stable system. Such approximation
based approaches are integrated, in this paper, with stable-inversion based techniques to achieve inversion
of linear systems with nonhyperbolic internal dynamics in [5]. However, the present technique does not use
output modification to stabilize the internal dynamics, rather output modification is only used to remove
the non-hyperbolicity. Additionally, for near nonhyperbolic systems, the present approach allows a tradeoff
between the precision-tracking and the amount of pre-actuation-time that is needed in the control effort.
This tradeoff between stable-inversion and approximation of the unacceptable internal-dynamics has been

studied for helicopter-hover control in [5]. The present work extends the results for linear-system in [5] to
nonlinear systems.

We begin with a background on the stable-inversion based output tracking technique, and computational
issues are presented in Section 3. The technique is applied to an example in Section 4, and conclusions are



in Section 5.

2 The Stable Inversion problem

2.1 Inversion-Based Output Tracking Scheme

Here we describe how the inversion approach is used to develop output tracking controllers. Consider a

system described by
z(t) = f [_(t)] + g[x(t)l _(t)

(1)
y(t) = h[x(t)]

where y(t) - [yl(t),y2(t),...,yp(t)] T is the output, with the same number of inputs and outputs, i.e.,

u(t),y(t) e _P, and z(t) e _n is the state. The functions f('},g(') and h(.) are assumed to be sufficiently
smooth with f(0) = 0 (i.e., z = 0 is an equilibrium point) and h(0) -- 0.

Let Yd(') be the desired output trajectory to be tracked. In the inversion-based approach we, first, find

a nominal input-state trajectory, [ull (.), Zr_l (.)] that satisfies the system equations 1 and yields the desired

output exactly, i.e.,

Zref(t)yd(t) == f[zrey(t)lh[Zrey(t)] q-g[ZreY(t)] Uyl(t) } Vt 6 (--O¢,OO) (2)

and, second, we stabilize the exact-output yielding state trajectory, xrey('), by using state feedback (see

Figure 1). Thus x(t) -+ xre1(t) and y(t) --+ yd(t) as t --* oo and output tracking is achieved. It is noted that
in this output tracking scheme, the reference state trajectory zrey(') and the feedforward input ul!(.) are

computed off-line.

F-_zdf_vatd, u _

]
De_aO_tputJi Inversion ITrajecloc/.y v] (off-line) StateTrajectoryITracker

System _._ y -g

RdenmceSuu_c,x,_ "]"L - kct_Sme.x

Figure 1. The Control Scheme

While stabilization of the reference state trajectory can be achieved through standard techniques [22] like

state feedback of the form K[x(t) - xrey (t)], the main challenge is to find the inverse input-state trajectory

[uy! (.), zr_y (.)] - especially for systems with nonminimum phase dynamics.

2.2 The Internal Dynamics

In this subsection, it is shown that finding the inverse input-state trajectory is equivalent to finding bounded

solutions to the system's internal dynamics.

Assumption 1 System (I) has a well defined vector relative degree, r := It1, r2, ..., r_].

The well-defined vector relative degree assumption enables the system equations to be rewritten, through a
co-ordinate transformation

[,,,,] [ ]• (tl = _(_(t)l ,7(t) - r(((t),,l(t)) ¢(t).(tl ' (3)

in the following form [1, 21]



_1(_) = A<,<I(t) "4- A¢2<2(t)

_(t) = ,_[¢(0,,7(t)] + ,2[¢(t),,#)]u(O (4)

O_(t) = .3[¢(0, ,(0] + ._[¢(0,,(0].(t)
where _ represents the output along with its time derivatives,

A<_ is a block-diagonal matrix

¢_(t) ] :=¢_(t)

_vt

drl-_ .

Y2

drp -2 .

drl - 1
at.--wz'r_-ltl
dr2-1

drp-I .
dt_-i_=r,-vp

(5)

A¢, = diag[Ax, As, As,..., A v]

with each block consisting of zeros except for ones on the super-diagonal, for example, Ak is a (rk -1) x (rk -1)
matrix of the form

0 1 0 0 ... O]

0 0 1 0 ... 0

Ah= : : : : : : (6)
0 0 0 0 ... 1

0 0 0 0 ... 0

(for all 1 _( k _ p). A(2 is a matrix whose elements are zeros except for elements on the (rk -- 1)-th row

and k-th column, which are ones (for all 1 < k _(p). Further from Assumption (1), s2(.,-) is invertible
in a neighborhood of the origin, and since the origin is assumed to be an equilibrium point, we also have

sl(0, 0) = 0, s3(0,0) = 0.
Note that the desired ¢(.) is known when the desired output trajectory gd(') and its time derivatives are

specified. This desired _(.) is defined as _4(.). If exact output tracking is achieved (i.e., if _(t) = _d(t)) then
the control law for maintaining exact tracking can be written as, from equation (4),

,,(0= [&,(O- sl[<,(t),,7(O]] (7)

which results in state-equations of the form

_(t) -" _d(t) (8)

= sa[<(t),_l(t)] + s4[C(t),tl(t)]u(t)

--'-- 83[<(f), l_(t)] + 84[<(t), _(t)] [$2(_d(t), _(f))] -1 [_,d(t) -- sited(t), ¢(t)I]

(9)



This isthe inversesystem and equation (9)isreferredto as the internaldynamics. Solving the internal

dynamics iskey to findingthe inverseinput statetrajectories.Ifa bounded solution,0d('),to the internM

dynamics (9)can be found then the feedforwardinput can be found through equation (7) as

,,_:(t) = [._(¢.(t),,7.,(t))]-_ [&.(t) -._(¢.(0,._(0)] (lO)

and the reference trajectory can be found as

x,-e.f(t) = T[_'d(t),r/dit)] Od(t) " (11)

Thus, finding a bounded solution, r/a(-), to the internal dynamics (Equation 9) is key to finding the inverse

(bounded) input-state trajectories (Equations 10 and 11) which is needed to implement the the inversion-
based output-tracking scheme shown in Figure 1.

2.3 Modified Internal Dynamics

Standard inversion schemes [12, 13] that integrate (forward in time) the internal dynamics (9) lead to un-

bounded solutions if the origin of the internal dynamics is unstable (nonminimum phase systems). Noncansal

inversion (e.g., [3]) leads to bounded but noncausal solution to the internal dynamics. While significant im-
provement in output tracking performance is possible, such stable-inversion techniques are not applicable to

systems with nonhyperbolic internal dynamics. In this subsection a compromise between stable inversion and

approximation based inversion schemes is proposed. The key is to modify the internal dynamics by giving
up exact output tracking - enough to remove the nonhyperbolicity, and then to apply stable-inversion. The

difference between the proposed technique and other approximate techniques is that the internal dynamics

is perturbed only to remove the nonhyperbolicity, and not to stabilize the internal dynamics as in other

approximation schemes [19, 21].

To modify the inverse system an extra term, v(t), is added to the control law (7) as follows

u(t) = [_[¢(0,,1(t)1]-'[_._(t) - _,[¢(t),.(t)] + v(t)] (1_)

With this control law the system equation (4) becomes (note that it is not required that exact tracking is

achieved, i.e., (_(.) = _d(') is not required)

_l(t) = A(_(l(t) + A¢_¢2(t)

&(t) = _2,d(t)+ v(O (13)

 lt) = + ..[¢(o,,(t)] - .,[¢(t),.(o]+v(t)]
For ease in notation, we define the tracking error, e((t), as

ec(t) := [e,,(t) ]:= [ 'l(t)--'Ld(t) 1
eel(t) ¢_(t) (2,d(t) j

and rewrite Equation (13) as

_¢,(t) = A¢,e¢,(,)+A¢,ec,(t)

_¢_(t) = v(t)

_It) -- $3[e_(t) -_-_dit),/lit)] -_

s4[e_it)A-Cd(t),_Tit)][s2[ecit)+ edit),r/it)]]-I [_2,dlt)--Sl[ecit)-i-_dit),r/it)]-1-vit)]

(14)

:= _[ec(t),,_(t),Yd(0,_(t)]



where
r _d(t)

Yd(t) := [ ¢_,,,(t)]

Next, the nonhyperbolieity of the modified internal dynamics (14) is removed by appropriately choosing

v(.). We begin with the following assumption.

Assumption 2 System (1) is controllable in the first approximation [1].

The above assumption implies that the modified internal dynamics is also controllable in the first approxi-

mation since the difference between the original system (1) and the modified internal dynamics (14) is only

a co-ordinate transformation and a static state-feedback (see [21] for a similar argument used for output

redefinition). Next, a feedback of the form

v(t) = F [e¢(t)]_(t) (15)

is chosen such that the modified inverse system is hyperbolic - i.e., all poles on the imaginary axis are
moved. Note that this change to an hyperbolic system can be achieved through arbitrarily small F since

nonhyperbolicity is not a structurally stable property. With this control law Equation (14) becomes

_¢,(t) =

_¢_(t) =

_(t) =

which is re-written in a simplified form as

A¢,e¢,(t) + A¢,e(_(t)

F[ e¢(t) ]o(t)

[ _(t) ] = s(_¢(t),o(t),Yd(t))0(t)

Next, stable inversion of the modified inverse system (17) is carried out [3].

(16)

(17)

3 Computation of the Inverse

This sectiondiscussesthe computation ofthe inversefor the hyperbolic,modified,inverse-system.First,an

iterativealgorithm ispresented - one of the steps involvesfindingbounded solutionsto a linear(unstable)

system. Second, the explicittechniquetofindbounded solutionsispresented,and the amount ofpreactuation

requiredfor implementing the inversion-basedcontrollerisdiscussed.We begin with the algorithm to find

bounded solutionsto the modified internaldynamics [3].

3.1 Iterative Algorithm to find Inverse

• Step 1

Rewrite the modified inverse (17) as

_d
dt [ e'_(t)]o(t) = S[ eC(t)]T/(t) + {.(*:(t),,7(t),Y.(t))-S [ _(t),7(t)]}

(18)

where the firstterm on the righthand side (r.h.s.)isthe linearizationof s(.,.,.)with respectto the

firsttwo variables,e{(.)and r/(.),and the second term on the r.h.s,representsa perturbation. This

motivates the followingiterativesolutionofthe internaldynamics.

• Step 2

At each iterationin the followingscheme, the bounded solutionofa linearizedsystem isto be found
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_.glee(0] = odt ,7(t) o

gt ,l(t) N+_ _(t) N+, + {s(e("rc)(t)''_(O'Yd(t)) - S [ _dO ]_},(t)

(19)

where

and N = 1,2,3 ....

[ e¢(t)]N+I "--[ e¢,N+l(t),7(t) "- ,N+_(0 ] (20/

3.2 Bounded Solution to Unstable Linear System

In the above iterations, solving equation (19) implies finding a bounded solution to a linear, hyperbolic (but

potentially unstable) system - this is described next.
We begin by decoupling the linear system (19) into stable (z,) and unstable (z_) subsystems. Since the

modified internal dynamics is hyperbolic, there exits a decoupling transformation U such that equation (19)
can be re-written as

Z.(s,N+I>(t) -- SsZ(s,N+I)(t) "JrG,YN(t)

z.(u,N+l)(t) = Suz(u,N+l)(t) -k G.YN(t)

where

and

f Z(a,N+I)(t)
ZN+,(t) := | z(_,_v+_)(t) ] := U [ e(''N+_,(t) ],l_+_(t) "[

An approach to find bounded solutions is to enforce the boundary conditions that z(,,N+l)(-oo) = 0 and

z(u,g+l)(oo) = O. This leads to unique bounded solutions by flowing the stable subsystem forward in time
and flowing the unstable system backward in time - this yields

z(,,N+l)(t) = flooeS'(t-')G, YN(r)dr Vt E (-oo, oo),

z(u,N+,)(t) = f= e-S"f'-t)GuYN(r)dr Vt E (-oo,_).

Next, a change of co-ordinates yields the bounded solution to (19) as

(21)

[ el(t)],}(t) N+I = U-'[ z(''N+_)(t)z(u,N+l)(t)]N+I . (22)

3.3 Convergence of Iterative Algorithm

The following Theorem states that, as N -_ oo, the solutions of the above iterative algorithm converge to a

bounded solution of the modified internal dynamics (17).

Theorem Let s(.,., .) and its linearization S satisfy the following Lipshitz like condition

_< K, II ,n - 02 Iloo + K_ IIY, - Y2 Iloo (23)



Then, provided KI, K2 and IIYd(')Ilooare small,the iterationscheme converges to a solutiontothe modified

internaldynamics (17),i.e,

Proof

See [3, 4]. []

Thus, stable inversion technique is applied after removing the nonhyperbolicity in the internal dynamics.

This completes the inversion-technique for nonminimum phase systems with nonhyperbolic internal dy-

namics. To summarize, the reference state trajectory is found as (from Equation 11)

z,,f(t) = T[_d(t),rld(t)][  d(t) ]'

where

 d(t) := ed(t) +qC,d)(t)

and the feedforward input, u/I(.), is found from equation (12) and equation (15) as

ulf(t)-_ [S2[_d(t),rJd(t)]] -1 [_2,d(t)- Sl[_d(t),r/(t)] + F [ e(¢'d)(t)_]d(t) ]] (24)

This inverse, [uy] (.), zre! (')], is used in the control scheme shown in Figure 1 to obtain output tracking.

3.4 Preactuatlon Time

Stable-inversiontechniques overcome fundamental limitationson transienttracking performance of non-

minimum phase systems [2]by using preactuation.However, the preactuationtime (i.e.,when most ofthe

preactuationeffortisrequired)tends tobe unacceptably largeifthe unstablepolesofthe linearized,modified

internaldynamics are closeto the imaginary axis- thisdependence isestablishedin the followingLemma.

temma

Let

all the unstable poles of linearized, modified internal dynamics (eigenvalues of Su) lie to the right, in

the complex plane, of the line Real(s) = a for some positive a, and

• the support of Yd(') lie in [to, c¢) for some to.

Then there exists a positive scalar, M, such that the bounded solution to the internal dynamics (defined by
the Theorem) satisfies

e(cd)(t) Me,(t-to)
[[ r}d(t) Iloo <

for all time, t, before the start of the maneuver at to.

Proof Since the maneuver startsat to,any solutionto the modified internaldynamics (17) satisfiesthe

autonomous equation,

0(t) = s (25)

for all t < to. Further, any bounded solution to the autonomous equation must lie on the unstable manifold

before the start of the maneuver. The rate of convergence to zero as time tends to -co, of solutions that

lie on the unstable manifold of the nonlinear modified inverse system, directly depends on the location of

poles of the linearized dynamics. In particular, the rate of convergence depends on the unstable poles of



thelinearization(which are the eigenvalues of ,5',). The existence of a positive scalar M that satisfies the

statement of the iemma follows from the saddle-point property (see [23] Theorem 6.1, and [24] Theorem

19.9). •

The present technique also provides a way to reduce the preactuation time for systems with near non-

hyperbolic internal dynamics. The Lemma states that the desired state-trajectory exponentially ends to zero
as we go back in time before the start of the maneuver at to. Then the continuity of the input with respect

to the state (smoothness of f, g and h, and the well defined relative degree assumption} implies that the

preactuation input also tends to zero exponentially. The rate at which the preactuation becomes zero can

be increased by moving the unstable poles of the linearized, modified internal dynamics (i.e., the eigenvalues

of Su) away from the imaginary axis - by appropriately choosing F in equation (15). This reduction in
preactuation-effort is obtained at the expense of exact output tracking (see [5] for a linear example).

4 Example

Here, the inversion-technique is applied to an example two-cart and pendulum system shown in Figure

2. The inverted pendulum on a cart has been well studied in literature (see, for example, [19]), and has

nonminimum phase dynamics - the internal dynamics is hyperbolic. An extra cart is added here, which

introduces nonhyperbolicity in the internal dynamics. The input to the system is the applied force, Fit),

and the output is the position, zl (t), of the cart carrying the inverted pendulum (see Figure 2). The equation

of motion for the system can be obtained as

(M + m)_l(t) + mlcosOit ) 0(_)

,.tcos0(t)i,(t)+ .a2
M_2(t)

which can be rewritten in state-space form as

= Fit ) +mlO2(t)sinO(t) - K(xl(t)-z_(t))

= mglsinO(t)

= -K(z2(t)- z1(t))

(26)

0,(t)=
=

 3(t)=
 4(t)=

where (1 := zl,

C2(t)

_-_ [F(t)/m + lr/2(t) 2sin ,/1(t) - K/m ((l(t) - ,73(1)) - g cos _h (t) sin 01 (t)]

(K/M) (¢I (t)- _I,(t))

.4(t)

_-_ [-rl.(t)2 sin r_(t) cos _(t)

+ _ {(M + m)g sin ,Ta(t) - F(t) cos 0air) + K (¢1 (t) - rh it)) cos r/z(t)}]

(2:=£t, rh :=z2, r/2:=x'2, 173:=O, and04:=O,

7(r/3(t)) := M/m + [sin r/3(t)] 2

(27)

Figure 2. Example: Two Carts and Inverted Pendulum

Given the desired output trajectory profile shown in Figure 3, the input that maintains exact tracking (i.e.,
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which maintains _(t) = _d(t)) is obtained from equation (27) as

F(t) = mT(_z)_l,d(t) -- m/[_4(t)] _ sin _(t) + K [_I (t) - _1 (t)] + rag[cos _(t)] sin _(t)
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Figure 3. Desired Output Profile for xl

With this exact tracking control law, the internal dynamics (represented by r/), is given by

i72(t) = (K/M)(Zl,d(t) -- _1($))
_3(t) = _4(t)
_4(t) = 9/1 sin_3(t) -- (1/1) cos_3(t)_l,d(t)

The linearization of the internal dynamics (28) is

d I12(t ) - M 0 0 0 TI2(t) K/M 0 Zl,d(t)

_4(t) o o glt o _4(t) o -1/_

(28)

(29)

Note that the linearization has two poles at +V/Z-K'/M on the imaginary axis (in the complex plane) which

corresponds to the cart dynamics (z2,_) with zl fixed; this corresponds to a spring-mass system. The
other two poles are at -t-V/_ which correspond to the linearization of the inverted pendulum dynamics

(0, 0). The two poles on the imaginary axis lead to nonhyperbolic behavior and stable-inversion techniques

fail - this corresponds to the case which requires infinite pre-actuation. In contrast, by modifying the desired
trajectory, the internal dynamics can be approximated by a hyperbolic system. This modification is achieved

by adding an extra term v(-) to the control as follows

tV.t(t) = F(t) = m3'(r/3)[_l,dCt)+ v(t)] -- ng [_/4(t)]2sin t/._(t)
+K [6 (t) - ,7](t)] + mg[cos,Ts(t)]sin _(t) (30)



The modified inverse system becomes

where

_¢.(t) = v(t)
_(t) = ,72(t)
il2(t) = -K/Mrll + K/M [zl,d(t)+ e¢,(t)]
/13(t) = ,7,(t)
i?4(t) = 9/lsin 0z(t) - I/lcos _(t) [_X,d(t)+ v(t)]

(31)

e¢(L) :-" [ e_(t) ] :_. [ _l(t)--Xl,d(t) 1
The additional input, v, is chosen (v = F[e_ r/7"]7") to remove the nonhyperbolicity. This can be achieved,
for example, by pole-placement algorithms. Simulation results are presented next. The system parameters
were chosen as K = 10, M = 1, l = 9.8, 9 = 9.8 and the F used in simulations is

F=[-4.52e-2 -3.04e-1 5e-4 1.5e-3 0 13].

This F removes the nonhyperbolicity of the internal dynamics and stable inversion of the modified inverse

system is carried out using the algorithm in Section 3. Simulation results are presented below: Figure 4

shows the desired output trajectory, and the redefined output trajectory. The internal dynamics ( z2,8 )
is shown in Figure 5. Note that the nonhyperbolicity is circumvented and stable inversion is achieved with

relatively minor modification of the output {see Figure 4).

loo

,i
A

Figure 4. Error in Output Tracking: Solid line is desired output and dotted line is the redefined output,

1_ ....... ! ....... _ " ' ................. _......... _ ........'"'_ _-"_t_........ _......... _ ..... :

. ......... i i_i .... i .......i..... _..........

i.... i .... i __ _ _
0 1 2 3 4 $ 4 ? $ O 10

F_.* A: _m* (s)

i! ,.... ......
0 l 2 3 4 & II 7 | 0 tO

Figure 5. Internal Dynamics
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5 Conclusion

A technique to achieve output tracking for nonminimum phase nonlinear systems with nonhyperbolic internal

• dynamics was presented. The approach integrated stable inversion techniques (that achieve exact tracking)

with approximation approaches (that modify the internal dynamics) to remove the nonhyperbolicity of the
internal dynamics. It was shown that, by giving up some of the precision in tracking, it is possible to achieve

stable inversion of nonlinear nonminimum phase systems with nonhyperbolic internal dynamics.
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Abstract

When a fixed regulator is used to stabilize a desired state tra-

jectory (guidance law), large initial tracking errors can lead to input

saturation, which can result in performance deterioration. A method

to modify the guidance law for recovering state-trajectory tracking

(without violating input and state constraints) is presented. Although

it may be feasible to find such a satisfactory recovery guidance maneu-

ver for a given initial tracking error, online development of recovery

guidance maneuvers may not be computationaUy tractable. A tech-

nique is developed to use precomputed recovery guidance maneuvers

(for a finite set of initial tracking errors) to generate recovery guidance

maneuvers for other initial errors. The technique is applied to an il-

lustrative example with input-magnitude-limits and input-rate-limits,

and simulation results are presented.

1 Introduction

Inversion of system dynamics can be used for precision output tracking con-

trol, for example, in aircraft control [1, 2], and in air traffic control (ATC) [3].

For example, in automated flight management systems, tracking of an ac-

cepted clearance (flight plan cleared by the ATC) can be achieved by the

following. First, the clearance is converted to an executable reference flight

path (desired output trajectory [4]). Second, this flight path is converted

into a guidance law (exact output-tracking input-state trajectory) found, for

example, by using an inversion based approach [5, 6]. Third, flight path

tracking is achieved by stabilizing the guidance trajectory by using a tra-

jectory regulator (see Figure 1). However, relatively large tracking-errors

(or a large external disturbance, that can be modeled as a tracking error)

can lead to saturation of the inputs and can lead to the violation of state-

constraints. This work addresses the issue of modifying the guidance law to

recover output-tracking without violating input and state constraints. The

recovery guidance problem is addressed in the framework of general linear

systems and an example is provided to illustrate the technique.

The Guidance Scheme: The guidance scheme, studied in this paper, is

shown in Figure 1, where the state-trajectory regulator, K, is assumed to be

2



given. The guidance problem, for a prescribed output trajectory, Yd('), is to

find a reference state trajectory, Xre f (.), and a feedforward input trajectory,

uff (.), that achieve exact-output-tracking which can be accomplished by the

inversion of the system dynamics (see, for example, [1, 3, 5, 7]). Note that

these input-state trajectories may be precomputed for a given set of desired

output trajectories.

Yd
Primary
Guidance

Uff + U

_U

S_
Y

Figure 1. Control Scheme

Violation of Actuator and State Constraints: A significant problem

with the approach is that relatively large initial tracking-errors can lead to

actuator saturation resulting in performance degradation. Additionally, con-

straints on the state may also be violated. One approach, to solve such

saturation problems, is to re-design the regulator ( K in Figure 1) for dif-

ferent magnitudes of the initial errors (see, for example, [8]), or to design

appropriate software limits (see, for example, [9] and the references therein).

Another approach is to develop a nonlinear feedback that avoids satura-

tion [10]. The present work develops an alternate approach, that doesn't

modify the regulator_ per se, but effectively bypasses it through recovery

guidance maneuvers that modify the primary guidance law. Such an ap-

proach, that doesn't modify the regulator, is important to systems where

the regulator is not easily accessible to modifications. For example, in the

design of flight management systems, modifications of regulator can require

extensive testing and re-certification, while the proposed open-loop recovery

guidance can be (relatively) easily incorporated into the software. Simi-

lax use of less-aggressive reference inputs to avoid saturation can be found

using receding horizon strategies [11] (also see references therein). These

techniques modify the command signal to avoid actuator constraints. Our

approach uses a similar idea to avoid saturation caused by large deviations

from a desired trajectory - the desired trajectory is recovered, however, the

3



recoverymaneuversare chosento be less aggressive. A key result is the de-

velopment of a methodology that doesn't require online computation of the

recovery guidance maneuvers - rather, in the spirit of the work by Mayne

and Schroeder [10], the recovery guidance maneuver is generated as the linear

combination of precomputed maneuvers.

We begin with a description of the guidance scheme in Section 2, followed

by the development of recovery guidance maneuvers from precomputed ma-

neuvers in Section 3. An optimal approach to develop recovery guidance

maneuvers, for a given initial tracking error, is presented in Section 4, fol-

lowed by an illustrative example and simulation results in Section 5. Our

conclusions are in Section 6.

2 Primary Guidance Scheme

Let the system be described by

_(t) = A x(t) + B u(t)
y(t) = C x(t) (1)

where z(t) E Nn is the state, u(t) E _q is the input and y(t) E _ is the

output. Additionally, let a state feedback K be given such that the closed

loop system is stable, i.e., A+BK is Hurwitz. In all the following discussions,
the feedback, K, is kept constant.

Given a desired output trajectory Yd('), the primary guidance scheme

(see Figure 1) finds a nominal input-state trajectory, [utf (.), Zre f (.)], that

satisfies the system equations (1) and yields the desired output exactly, i.e.,

_ref(t) = Azre f(t) +Buff(t) _ Vt E (-_,o_) (2)9,(t) = C Xre f (t) J

Next, the exact-output yielding state trajectory, Xre f (.), is stabilized by
using state feedback (see Figure 1). The control law is

u(t) = utf (t) + K[x(t)- Zre f (t)] .

With this control law, the dynamics of the tracking error,

(3)

e(t) := x(t) --Zre f (t),

4



is obtained from equations (1) and (2) as

6(t) = (A + BK) e(t) . (4)

Since A + BK is Hurwitz, x(t) _ Xre f (t) and y(t) --+ yd(t) as t --_ oo

and therefore, output tracking is achieved. It is noted that in this output

tracking scheme, the reference state trajectory Xre f (.) and the feedforward

input uff (.) can be computed off-line. It is also typical for the desired output

trajectory to be a composition of several pre-determined sub-trajectories and

the primary guidance scheme may concatenate several precomputed guidance

laws. These primary guidance laws could be found using inversion of the

plant dynamics (for systems with same number of inputs as outputs see,

e.g., [3, 5, 7, 12], and for actuator-redundant systems see [13]).

Problem with the Guidance Scheme: A critical problem with the

above guidance scheme is that large errors between the reference state-

trajectory and the actual system state, at the beginning of a maneuver, can

lead to actuator saturation and to substantially deteriorated performance.

Note that the input-saturation problem is accentuated if a relatively high

gain regulator, K, is used - which may be necessary to achieve high perfor-

mance for relatively small tracking errors. The goal of the recovery-guidance

maneuver is to modify the primary guidance law (reference-state trajectory)

such that the system states can be brought close to the reference state trajec-

tory (i.e., output-tracking is recovered) without saturating the actuators and

without violating state constraints. Recovery guidance from large external

perturbations can also be studied under this framework provided the per-

turbation is modeled as an initial tracking-error, that triggers the recovery

guidance generator.

3 Trajectory Recovery Guidance Scheme

The recovery guidance scheme aims to maneuver the system without violat-

ing input and state constraints. The approach is to modify the reference state

trajectory to avoid saturation of the actuators (see Figure 2). This modi-

fication, Xmo d (.), is essentially open-loop, however, it is assumed that the

recovery guidance trajectory generator has access to the initial tracking-error

(when the recovery guidance is initiated).
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Figure 2. The Recovery Guidance Scheme

With the modified state-trajectory the control law given by equation (3)

becomes (see Figure 2)

u(t) = ue (t) + Ufb(t)
= uff(t) q-K(x(t)-Xre f(t)) -I-Kxmod (t)
= ue (t) + K e(t) + gxmod (t)

(5)

where

un, (t)(t) = g e(t)
and the error equation (4) becomes

+ Kzmo d (t) (6)

h(t) = (A + BK) e(t) + BKxmo d (t) . (7)

3.1 Use of Convexity to Generate Recovery-Maneuvers

The key idea is to pre_compute the trajectory modification for a set of initial

conditions (from a set X), and then use these pre-computed modifications

for other initial-conditions. This is summarized in the following proposition

that uses the convexity argument due to Mayne and Schroeder [10]. The

proposition states that if satisfactory recovery guidance is known for a set

of initial conditions, X, then satisfactory recovery guidance maneuvers can

be obtained for any initial conditions in the convex hull of X, provided the

following assumption holds.

Assumption 1 The region of acceptable states in g_n and the region of ac-

ceptable inputs in _ are both convez regions that contain the origin.

6



w _ (1,2...p), and _ _,, = 1 .
ra_|

where the subscript indicates the component of a vector.

(8)

Proposition 1 For each initial condition, z'_(0) E X, let Zmo d (.) be a

trajectory-modification, that enables guidance-recovery while satisfying the

state and input constraints. Let z(O) be an initial condition in the convex

hull of X and Az(o) E A 1, for some p, such that

P

x(o) = r, _izco_,_]x"(o)
ln-----I

where the superscript denotes elements of a sequence. Then, the trajectory

modification,
P

Zmo d (t) := _ Ai=(0),m] Zmo d (t),

is a valid recovery guidance law, i.e., input constraints and state constraints

are satisfied.

Proof The error dynamics (equation (7)) is linear in the initial condition,

e(0) and in the input Zmo d (.). Since e(0) and Zmo d (.) are linear combina-

tions of e'_(0) and Xmo d (-) with the same weights for erich m E (1,2,...p),
the lineaxity of the error dynamics yields

P

Here, e_(.) is the solution to the error dynamics corresponding to the tra-

jectory modification Zmo d (.) and initial condition e'_(O).

Let zm(.) is the solution to the modified state equation with initial con-

dition x'n(O) and the guidance modification Zmo d (-). Then, the definition

of the error yields x_(.) = Zre f (.) + e(.). This and F._=_ Al=(0),m} = 1,



imply that

x(t) := Xref(t) + e(t)

P= E,,_=I AI,(o),,,,l Zref (t) + T--_=I A[.(o),,_] e'_(t) (9)

p x-(t)= _,_=I _[_(o),,.1

Thus, the convex hull of z'n(t) forms a tube (as time varies) - Assumption 1

implies that the tube is in the acceptable region of the state space and hence

z(.), which lies in this tube, is also acceptable.

Similarly, linearity of the modified input in e(-) and Zmo d (-) (see equa-

tion (5)) yields

u(t) := uff(t) +Ke(t) + Kxmo d (t)

= 'E.,,.=I )_1_(o),,._] KE_=_.xt,(o).,-,,1_ (t) + p ,e'Ct)+ E,,,=_.xt=(o).,,-.lXT_oa(t)

= E_=_ ,X[.(o),,,,3u'(t)
(10)

where u_ (.) is the modified input for the initial condition z'_(0). Thus the

convex hull of u_ (t) also forms a tube (as time varies) - Assumption 1 implies

that the tube is in the acceptable region of the input space and hence uff (.)

which lies in this tube is also acceptable.
[]

Remark 1 The above proposition is also valid for time-varying systems.

3.2 Decoupling Guidance Recovery from Primary Guid-

ance

In the above approach, the guidance modification, Xmo d (.), might depend

on the particular maneuver being considered - thus, for each maneuver, the

Zmo d (.) to be stored is different even if the initial tracking-error e'n(0) re-

mains the same. We propose a method to trade-off the storage require-

ments with performance - to remove the dependence of guidance modifica-

tion, Zmo d (-), from the primary guidance maneuver, [_r ('), Xre_ (%



Note that bounds on the input-components can be decoupled into bounds

on the feedforward and feedback by using the triangle inequality

_< +IK +
(Ii)

The primary guidance can be designed to ensure that the feedforward in-

put components, lu(lt,i)(t)l, are within bounds and the recovery guidance

design can be aimed at limiting the feedback components, lu(ib.i)(t)[. This

distribution of control authority allows the bounds on feedback-input to be

independent of the feedforward input, which could depend on the particular

maneuver.

Similarly, bounds on the state-components can also be decoupled into

bounds on the components of the error, lei(t)h and bounds on maneuver-

dependent reference state trajectory components, [Z(rel,i)(t)[

(12)

a:,(,)l_<

:- I=(,,j.,)(t)1 + le,(t)l vi E 0,2,...n).

Again, the primary guidance can be designed to ensure that Ix(,e1,i)(t)l is

within bounds and the recovery guidance design can be aimed at limiting

le;(t)l. This decoupling is formalized by the following proposition.

Assumption 2 The region of acceptable errors in _", and the region of

acceptable .feedback inputs in _ are convex regions that contain the origin.

Proposition 2 For any initial error, e_(O) E E, let Xmo d (-) be a trajectory-
modification, that enables guidance-recovery and satisfies the error and feedback-

input constraints. Then, given an initial condition, e(O), in the convex hull

of E and he(o) E Ap for some p, such that

P

e(0)= Z] _to(0),_le=(0),
ttt._l

the trajectory modification

Xmo d (t)= _ A[e(o),=] Xmo d (t),
m----1

9



is a valid recovery guidance law i.e., the input and state constraints are sat-

isfied.

Proof This follows from arguments similar to those for the proof of Propo-

sition 1 and inequalities (11) and (12). 13

Note that the proposition allows the design of the trajectory modifications

that are only dependent on the initial error. Thus, Xmo d need not depend

on the particular primary guidance law - note that this decoupling trades off

performance for reduced-storage.

4 Recovery Guidance Generation

Recovery for a single initial condition: Given a specific initial con-

dition, any algorithm may be used to find a particular recovery guidance

maneuver. To illustrate the method, in the following, an optimal control

formulation is used to design the recovery maneuvers.

The tradeoff between the need to bound the error and the need to bound

the feedback input can be posed as an optimization problem - as the mini-

mization of (over all inputs, Xmo d (-), to the error-dynamics (7))

J := fooo

= f0oo

T
{er(t)Q_e(t) +U_b (t)Rufb(t) +Xmod(t)Q_odXmod(t)}dt

{xTmo d (t)(KTRK +Q,nod)Xmo d (t) + 2eT(t) (KTRK)Xmod (t)

+ eT(t)(KTRK +Q,)e(t)}dt

T
:= f0°° {Zmo d (t) RXmod it) +2eT(t) SXmod it) +eT(t) Qe(t)}dt.

(13)

where Q_ is the weighting factor on the error, and R is the weighting factor

on the feedback input. This is the standard optimal control problem for the

modified error dynamics equation (7), with Xmo d (.) as the input

_(t) = (A + BK) e(t) + BKxmo d (t)

The optimal trajectory modification law is then obtained as (see, for example,

10



[14] for the developmentof the standard optimal control law and conditions

on the weighting matrices)

Xmo d (t)= ire(t)

where

k = ((BK)TP+
and P is the solution to the algebraic Riccati equation

(14)

P(A+BK) +(A+BK)Tp-(P(BK)+S)._-I((BK)rP+_S T) +Q=0

Substituting the modification law into the error dynamics equation (7) and

solving the resulting equation yields an open-loop trajectory modification

that depends only on the initial error

(t) = exp[(A + BK + BK[f)(t)]e(O)Xmod (15)
:= exp[(A + BKc)(t)]e(O)

For each initial error, e(0), the weightings (Qe, R, Q,nod) used in the above

optimization cost-criterion can be different, however, only the resulting K,

in equation (15) needs to be stored for each of the initial conditions.

Note, again, that other algorithms may be used to obtain suitable recovery

guidance laws for prespecified initial conditions in E. Alternate approaches

to finding such guidance modification, Xmo d (.), include the following.

• The weighting factors in the above cost function Qe, R, Q,,_od can be

time-varying [14].

• The optimization problem can also be posed in the frequency domain

and the weighting factors can also be made frequency-dependent to

account for band-width limitation of the individual actuators [15].

• Another approach is to achieve zero tracking-error in fLtfite time [14].

Next, we discuss using these precomputed recovery guidance laws to generate

recovery guidance for other initial conditions.

11



Recovery Guidance for initial error in Convex Hull of E : In

general, given an initial error and a set initial-errors, E, for which the recovery

guidance maneuvers are known, an initial error in the convex hull of E may

be written as the convex combination of elements of E

e(0) = _ _. e'(0) (16)
,11

where e'(0) E E. This representation may not be unique, however, each rep-

resentation leads to an acceptable recovery guidance maneuver (by Proposi-

tion 2).

Remark 2 The particular choice of the convea combination e"_(O) can be

optimized by using additional criterion -for eaample, to maximize the con-

vergence rate of the error dynamics. Note that the resulting error dynamics,

e(.), will converge atleast as fast as the slowest e'(.) that have nonzero coef-

ficients in equation (16) - which gives a lower bound to the convergence-rate.

Therefore the coefficients, _,, of the convex combination in equation (16)

may be chosen such that lower-bound of the convergence-rate is mazimized.

We present one technique to find a recovery guidance law by appropriately

defining the set of initial errors, E, for which the recovery guidance maneuver

is precomputed. Let the set of acceptable errors, I_o, a), be defined by upper

and lower bounds on the components of the error vector, i.e., let a E _" and

E _" be given such that

a, < /_i , Vi E (1,2,...n) (17)

and any acceptable initial-error, e(0) E V(a,a), satisfies

ai < ei _< _i , Vi E (1,2,...n). (18)

We define the corner points of the set of acceptable errors, V(o,a), as the set of

initial errors, E, for which the recovery guidance maneuvers are precomputed,
where

E

Let {e'}:__=_"
be written as

:= {elei=a, or ei=_i, Vi E (1,2,...n)}.

be an enumeration of E. Then any initial error e(0) E E can

2 It

e(0)= E x. e"
.--1

(19)

12



where

with

_ = II _,(e,, e;")
i--I

(20)

"ri(e_, ep) :'- _ if e_' = ai

(2_)
•- _ if em = fli•-- _i-m

The weighting, ,_,,, in equation (19) is used to generate the recovery guidance

maneuver as discussed in the Proposition 2.

Remark 3 The performance of the recovery guidance maneuvers can be im-

proved by decomposing the set of initial errors into smaller sets, V(_,a, ) , j E

(1,2,... J), and developing recovery guidance maneuvers for each of the

smaller sets. This can lead to increased performance, however, it also re-

quires an increase in storage (to store precomputed recovery maneuvers for

the corner points of each of the smaller sets).

5 Example

System: Consider the motion of a point mass (for example, the linearized

single-axis dynamics of an aircraft, see Meyer and Smith [6])

u(t) = xl(t)

(22)

where y, Y,i) (i.e., zl, z2, z2) represent the generalized position, velocity and

acceleration, respectively. Additionally (as is typical in aircraft control) we

consider the case when the generalized force fi(t) is not directly accessible.

We assume that the servo-actuator, that generates the input, fi, is represented

by a second order system of the form [6]

a(s) kJ
u"Cs ) = s 2 +2¢ws +w 2 (23)

13



and consider the case when the magnitude of the servo-input, u*, is limited

by saturation. Further, we consider rate-boundedness of the servo-input by

adding an integrator in the actuator-model, as follows (see Figure 3)

,,'(,) :
= -, (24)

.(,)

and by adding a constraint on the servo-input-rate, u. If saturation is

avoided, then the state space model of the entire system can be described as

_(t) = _,(t)
_,(t) = _(t)
d:S(t) "- x4(t)

_,(t) = ,,(t)
- 2(o:_,(t) + k_=x_(t)

(25)

where the constants are chosen as k = 1, w = 1 and ( = 0.7 in the simulations.

Further, a feedback law, K, is also assumed to be given such that the closed

loop system is stable. For all simulations, K is fixed as

K=[-10 -20.5 -17.3 -3.75]

Y_vo-r_ 5¢rvo-intmt
limi_ limita

2_(o{s + 0)'S3+

Servo-Acalltof

Figure 3. Example System

Constraints: The servo-input is to be limited as (see Figure 3)

u'(t) -- xs(t) e [-1,1],

which also limits the input to the system, _(t). This input, fi(t), represents

the generalized acceleration, _(t) = x3(t). Further, the servo-input-rate,

u(t), is limited to

u(t) • [-1,1]

14



In the following, the control authority is split 50-50 between the primary

guidance and the recovery guidance as follows: the primary guidance gener-

ator is to ensure that the servo-input and the servo-input-rate are less than

half the maximum limits, i.e.,

luff(t)l < 0.5 (26)
IXSref(t)l < 0.5

and the recovery guidance generator should ensure that the servo-input and

the servo-input-rate do not saturate - by limiting them also to half the ac-

ceptable bounds, i.e.,

lufb (t)l _< 0._ (2_')
les(t)l := Izs(t)-XSref(t)l < 0.5

Design of the Primary Guidance Generator: Let a desired output

profile, yd('), and its time derivatives (upto the fifth time derivative) be

given. Then, the exact-output tracking input-state trajectory can be found

from equation (25) as (note that the existence of the time derivatives is a

necessary condition for exact-tracking [7])

Zlre f 1

X2ref

X3ref

X4ref

XSref

(0 =

yd(t)

y 3)(t)
(28)

where the bracketed superscript stands for time-derivative. The exact-tracking

input-trajectory is obtained by differentiating, with respect to time, XSre f in

equation (28), to get

1 [y(dS)(t)+2¢Y(d4)Ct) +W2y(dS)Ct)] (29)uff (t) = $Sref(t) =

Note that the restrictions on the primary guidance, equation (26), may im-

ply that some of the desired trajectory profiles may not be feasible - thus

requiring the redesign of the desired output trajectory profiles (see [16] for an
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optimal approach to output-trajectory redesign for invertible systems). Fig-
ure 4 shows a primary guidance trajectory for changing the the generalized

position, y, from 0 to 10. Figure 5 shows the system response, when the input
is allowed to saturate - note the rapid degradation of tracking-performance.

The initial error was a 10% error in the position (compared to the maximum

change in position of 10) and all other state-components has zero error.

Next we discuss the generation of the recovery guidance maneuvers for such

large errors that lead to performance deterioration. Note that if the initial

errors were relatively much smaller, then recovery guidance is not needed.

Development of Recovery Guidance: To reduce the number of simu-

lations, in the following discussion, it is assumed that the initial conditions

of the actuator states, x3, z4, xb, are zero, i.e. initial errors have the form

[el e2 0 0 0]T

If the initial tracking errors in the actuator states are non-zero, then the only

change is that the number of initial errors (comer points of the error-set) for
which the recovery guidance needs to be precomputed increases from 22 to

25 (and 28 more simulations needs to be presented).

In the simulations, the non-zero initial tracking errors of the generalized
position and velocity are also assumed to be in the following range (see

Figure 6) [ell _< 5 and le2[ _ 0.5. This corresponds to a 50_ error in the
initial-position when compared to the maximum change in position in the

primary guidance law (see Figure 4), and approximately 50% error in the
initial-velocity when compared to the maximum velocities in the primary

guidance law (see Figure 4).
For this particular example, we compute recovery guidance laws for four

extreme initial errors ( e 1, e_, e3, e4, which are corner points of the set of

acceptable initial errors in Figure 6), and the results of the recovery guidance
maneuvers are shown in Figures 7-10. Even with substantially large initial

tracking errors the resulting recovery guidance maneuvers lead to recovery

of trajectory-tracking without violating input or state constraints (compare

Figures 7-10 with the case without recovery-guidance in Figure 5). How-
ever the design of such recovery guidance requires the manipulation of the
weighting matrices in the cost-criterion and requires repeated simulations to

check performance. This design is not computationally-feasible, on-line, for

16



an arbitrary initial condition. The idea is to generate recovery guidance laws

that satisfies the system and input constraints for a few initial conditions and

then use these to generate, on-line, recovery guidance laws for other initial

conditions.

For the present problem, the other acceptable initial conditions are in

the square, defined by the four extreme (corner) points in Figure 6. An

acceptable initial error, e(0) can then be written as a convex combination of

the corner points (e 1, e2, e 3, e4) as

e(O)= _ _,_e"
m=l

:-- 7_ 7_ where

7? := (i/10)(edO)+5)
:= (I/I0)(5-e,(O))

"y_:= (e2(O)+ 0.5)
:= (0.5- e2(O))

with Am

if m e {1, 2}

if m E {3, 4}

if rn E{1, 4}
if rn e {2, 3}.

(30)

The recovery guidance law can also be written as as a convex combination of

the precomputed recovery guidance laws (for the corner points) as in Proposi-

tion 2. Simulation results are presented in Figure 11, which shows the results

of the recovery guidance maneuver - output-tracking is achieved without vi-

olating the constraints. Note that this is the same initial error that lead to

input saturation and lead to loss of tracking when recovery-guidance was not

used (compare Figures 5 and 11). In contrast, the recovery guidance maneu-

ver is guaranteed to satisfy state and input constraints. A second initial-error

is also chosen that represents a larger 25% initial-error in position. As seen

in Figure 12, output-tracking is still recovered by the guidance generator

without saturating the servo-input or the servo-input-rate.

6 Conclusions

A method to modify guidance laws to recover trajectory-tracking without

violating input and state constraints was presented. The technique uses re-

covery guidance laws that are precomputed for a few initial conditions to

generate satisfactory recovery guidance maneuvers for other initial condi-

tions. The technique was applied to an illustrative example and simulation

17



results showed that guidance modifications can successfully achieve recovery

of trajectory tracking even with relatively large initial tracking errors, which

could otherwise lead to actuator saturation and eventual loss of tracking.
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Abstract

In this paper, we extend stable inversion to nonlinear time-varying systems and

study computational issues - - the technique is applicable to minimum-phase as well as

nonminimum-phase systems. The inversion technique is new, even in the linear time-

varying case, and relies on partitioning (the dichotomic split of) the linearized system

dynamics into time-varying, stable and unstable, submanifolds. This dichotomic split

is used to build time-varying filters which are, in turn, the basis of a contraction used to

find a bounded inverse input-state trajectory. Finding the inverse input-state trajectory

allows the development of exact-output tracking controllers. The method is local to the

time-varying trajectory and requires that the internal dynamics vary slowly, however,

the method represents a significant advance relative to presently available tracking

controllers. Present techniques are restricted to time-invariant nonlinear systems and,

in the general case, track only asymptotically.
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1 Introduction

In this paper, the stable inversion problem for nonlinear time-varying systems is solved. The

approach is quite novel in that it applies to nonminimum phase systems - - even the linear

version of our approach is new in the time-varying context. The basic idea is to compute

the inverse dynamics, through a contraction, to find an input-state trajectory that achieves

a desired output trajectory. To develop output tracking controllers, the input trajectory

(found through inversion) can be used as a feedforward input signal in conjunction with.

any conventional feedback control law that stabilizes the inverse state-trajectory [1]. The

present work completes a line of research which was motivated by the inversion of time-

invariant articulated flexible structure dynamics [2], and extends our work on inversion of

general affine-in-control time-invariant nonlinear systems [3].

System inversion is key to recent results in exact-output tracking for autonomous systems

[1, 3, 4, 5] - this paper extends these results to exact-output tracking of time-varying systems.

The output tracking problem has a long history marked by the solution of the linear time-

invariant regulator problem by Francis [6] and the nonlinear time-invariant generalization

made by Isidori and Byrnes [7]. The linear regulator is designed by solving a manageable set

of linear matrix equations, whereas the nonlinear regulator requires the nontrivial solution

of a first order partial differential algebraic equation. These approaches asymptotically track

any member in a given family of output signals. More recently, there have been refinements

of these approaches. Huang and Rugh [8] used a formal Taylor series expansion of the

Isidori-Byrnes PDE and gave a sufficient condition for solvability. Krener [9] extended this

work by providing necessary and sumcient conditions for the term-by-term solvability of the

Taylor series. Robustness issues are studied by Huang and Rugh [10] and Huang and Lin

[11]. Other methods that result in approximate tracking can be found in ([121, [13]and [14]).
The Francis and Isidori-Byrnes regulators apply to time-invariant systems and have the

property that they track any one of a family of signals asymptotically. Our approach trades

the requirement of solving the partial differential algebraic equation encountered in the

Isidori-Byrnes regulator with the requirement of tracking a specific trajectory (rather than

any one of a family). Moreover, no exosystem is required, and the specification of trajec-

tories is simplified. We do, however, introduce boundedness and integrability requirements

on the output trajectory. The key to our approach is finding a bounded inverse, even for

nonminimum phase nonlinear systems, for use in generating feedforward inputs. Since in-

version is key to our method, the works of Hirschorn [15], and Di Benedetto and Lucibello

([16] and [17]) on inversion are most relevant to this paper. The early work of Hirschorn

is restricted to causal inverses of time-invariant systems and agrees with our inverse in this

restricted case. Di Benedetto and Lucibello consider the (nonlinear time-varying) system's

initial condition as an input and use inversion in this context - the difference is that we, in

effect, use noncausal input to set up the desired initial condition, and provide the framework

for constructing the noncausal input.

Noncausal feedforward can be used if trajectory preview is possible, or truncated to a

causal signal at the cost of introducing transient tracking errors [3]. Such noncausal character

is seen in the linear quadratic setting, but the use of exact inverses in nonlinear tracking

control is new. The noncausal inverses used here have been applied to the control of flexible-

link robots in [18]. A recent work by Meyer, Hunt and Su [4] makes extensions in the context
of air-traffic control.



More concretely,considera nonlinearsystemdescribedin the following normal form [19]

y(r)(t) = _[((t),_(t),t] + _[((t),_(t),t]u(t),

,i(t) = _,[¢(t),,7(t),t] + _2[_(t),,7(t),tl,,,(t), (1.1)

where _ E 31 represents time, r = (rt,r_,... ,rp) t is a vector of positive integers, y(t) =

[yl(t),yz(t),...,yp(t)] T is the output, _ represents the output, y, along with the output's

time derivatives, and

y_r)(t)& Ld-E-' , ,, dt_ ' " . , (t)

Further, a(.,-,.) and/3(., .,-) are smooth in their arguments with a(0, 0, t) = 0 and s_ (0, 0, t) =

0 for all t. Let Y_(.), describe a desired output trajectory - this includes information of the

time-derivatives of the desired output, i.e., the desired _(-) represented by ffa('), and the

desired y(_)(-) represented by y(_*)(.). For this desired output, the input trajectory that

maintains exact tracking is given by

u(t) _= [_[G(t).,7(t).tl]-' [y(_)(t)-o_[_a(t),,7(t),t]]. (1.2)

where it is assumed, for invertibility [1], that the absolute value of det[_] is greater than a

positive scalar, e_. Then, the system's internal dynamics is given by

il(t ) = s,[_d(t),rl(t),t ] + s2[(,_(t).tl(t).t][B[{d(t),rl(t),t]] -t [y(")(t)- a[{a(t),rl(t),t]]

A= s[rl(t),Ya(t),t]. (1.3)

Note that, if a bounded solution. 7/_(.). to the internal dynamics [ equation (1.3)] is found,

then a bounded input trajectory (that maintains exact-tracking) can also be found using

equation (1.2) as

ua(t) = [3[(_(t).,tiit).t]]-' [y(")(t)- a[_a(t),rla(t),t]] . (1.4)

The main difficulty is that the internal dynamics could have an unstable equilibrium at r_ = 0.

Then, typical solutions to the unstable internal dynamics equation (1.3) are unbounded, and

consequently the inputs found through equation (1.2) are also unbounded. A technique to

find bounded solutions to nonlinear unstable internal dynamics has been developed in [1]

with extensions made in [4]. Such stable inverse input-state trajectories have been used to

develop output-tracking controllers in [3]. In this paper we extend the theory to the case

when the internal dynamics is time-_ar.ving, and study computational issues.

2 A Nonlinear I/O Operator

In this Section we develop a nonlinear input/output (I/O) operator denoted A/', which is cen-

tral to the inversion of nonlinear nonminimum phase systems. This operator maps bounded

inputs into bounded Caratheodory solutions [20] of equation (1.3),

;7(t)= ,(_(t), Yd(t),t) ; _(+oo) = o.

2



Note that the input to the operator is Ya('), which consists of the desired output trajectory

and its time derivatives. The basic idea is to construct a contraction whose fixed point is a

solution to (1.3). The contraction is motivated in the following way. Since it is not known

whether or not _(t) = s[r/(t), Ya(t),t] with r/(:t:oo) = 0 has a solution, we expand s(.,.,-) into

linear and perturbation terms

el(t) = A(t)r/(t) + [s[rl(t),Y_(t),t ] - A(t)rl(t)] , (2.1)

where the term in the large square brackets represents the perturbation term. If we know the

perturbation term, then we can establish conditions for the existence of a bounded solution

to this forced linear system. Our approach is to take a guess at the perturbation term and
iterate - we start with

= 0,

and at each iteration ( n > 1 ) solve for a bounded solution to the linear (but potentially

unstable) equation

¢7.+1(t) = A(t)r/.+,(t) + [s[r/.(t),Yd(t),t]- A(t)r/.(t)].

We then prove that this iteration converges to, r/a(.) _ A/'[Ya(')], a bounded solution of the

differential equation (1.3). We begin with the linear counterpart of A/', denoted ,4 which

finds bounded solutions to the above (unstable) linear equation, i.e.,

o.+,(t) _= A[sIr/,(.),Ya(.),.l- A(.)rl,(.)](t),

2.1 Linear operator ,4

For a system of the form _(t) = ,4r/(t) + Bu(t), with ,4 having no jw-axis eigenvalues,

various input-output operators may be defined. The most common operator used in control

theory imposes an initial condition of the form r/(t0) = r/0 on the state trajectory. In this

Subsection, we define an operator .A, which imposes an alternative boundary condition,

7/(+oo) = 0, on the state trajectory: so that the resulting state trajectories are necessarily
bounded.

Consider a linear time-varying system of the form

il(t) = A(t)rl(t) + v(t) (2.2)

where r/(t) E _"" and A(t) E _,,x.,. The key idea is to make a state transformation splitting

the system (2.2) into two decoupled subsystems; one of which is exponentially stable and the

other is exponentially unstable. By integrating the stable subsystem forward in time, and

the unstable subsystem backward in time, a bounded solution to the differential equation is

obtained (see [3] for a similar approach in the time-invariant case). Although the decoupling

of time-invariant linear systems is easily done by using a state-transformation constructed

with the eigenvectors of the A matrix, this approach does not lead to the necessary decoupling
in the time-varying case [21].

In the following, we use results by Coppel [21], to establish the dichotomic split that

enables extension of the stable-inversion theory to the time-varying case.

3



Definition 1 Kinematic Similarity [21]

The homogeneous equation

i?(t) = A(t)rl(t) (2.3)

with A(.) continuous for all t E _1, is defined to be kinematically similar to

(v(t) = B(t)w(t). (2.4)

provided: there exists a transformation S(.) such that for any given solution w(.) to equa-

tion (2.4)

_?(t) = S(t)w(t) (2.5)

is a solution to equation (2.3), S(t) is a continuously-differentiable invertible matrix, and

both S(t) and S-1(t) are uniformly bounded for t E _1 . []

By substituting equation (2.5) into equation (2.3) we see that S(t) necessarily satisfies

S(t) = A(t)S(t)- S(t)B(t).

The key is to find a Kinematic similarity that achieves the dichotomic split of the linear

system (2.2) into stable and unstable subsystems. This dichotomic split is possible provided

A(t) : (a) is slowly varying in t; (b) is uniformly bounded in t; and (c) is hyperbolic.

These conditions are formalized next, and the dichotomic split is established in the following

Theorem.

Condition I A(t) E _n,×,, satisfies condition I, if there exists positive M, a,/3 such that

for every tE_1

1. II A(t)I[1+o¢ < M. See Nomenclature for the definition of II " IIl+oo

2. A(t) has k eigenvalues with real part less than or equal to -c_ < 0 and n n - k

eigenvalues with real part greater than or equal to/3 > 0, where 0 < k < n_. O

Theorem 1

Let A(t) satisfy condition I. Then for any positive scalar e < min(ct,/3) there exists a

positive scalar 5 = 5(M, cr +/3, e) such that, if I] _tA(t) ]]1+oo < 5 for every t E _1, then

1. Equation (2.3) is kinematically similar to

e-7 w..(t) - 0 B.(t) w.(t) ' (2.6)

where ws(t) E _k w..(t) E NC,,_-k}

2. Further, tb,(t)= Bo(t)w,(t)is exponentially stable and tbu(t) = B_,(t)w_,(t)is exponen-

tially unstable. That is, the respective fundamental matrix solutions (see [20], pg.80)

W, and W_, satisfy

II w,(t)w;-l(s) Ill+oo < Ke-(a-_)(t-s) for t > s

II W_(t)W:'(s)II,+oo <- Ke-(_-_)('-t) for s >_ t. (2.7)



3. The associatedtransformation S satisfies

IIS(t)ll,+_ _ Nl(M,a+fl, e) (2.8)
IIS-X(t)ll_÷oo_ N2(M,a+13,e). (2.9)

Proof: This follows from Coppel's work [21] (in particular, see Lemma 2 and Theorem 3).
[]

Remark 1 Note that an important condition in the above Theorem is that A(.) is slowly

varying in time. []

The above dichotomic split of the system into stable (w,) and unstable (w=) subsystems

leads to the following bounded solution to linear system (2.2). Given A(.) satisfying the

conditions of Theorem 1, a linear operator .4 that finds bounded solutions to system (2.2)

is given by

Definition 2 .

For v(.) E L1 VI Loo,

_t(v)(t) _= s(t) Y-oow,(t)W;'(¢)S,(¢)v(¢)d¢
_ f:o W,(t)w:'(¢) S,(¢)v(r)d¢

where

s.(t) _= [w ' 0'x_-,-'_]s-'(O
s.(t) A [0_-o-,_x,/¢°.-,_x¢o.-,_]s-'(t),

W,, W,,,S are as in Theorem 1, and without loss of generality W,(0) = I kxk, W=(0) =
I(n"-k)x(n_-k). []

Corollary 1.1 Given an operator ,4 as in Definition 2,

1. II_t[.(.)](.)Ill+oo-< C_ll v(.)Ill+oo

2. A:LINLoo_L1NLootqC O

for some G._ (finite gain property)

3. lim .A(v)(t) = lira .A(v)(t) = 0
t--+--oo t-++oo

Proof: See [1]. []

This linear operator, ,4, finds a bounded solution to an unstable linear system. This operator

is extended to a nonlinear operator (that finds bounded solutions to the nonlinear internal

dynamics) in the next Subsection.



2.2 Generalizing A to Nonlinear Case; the Operator A;

The following Condition requires that, the perturbation term in equation (2.1) satisfies a

locally Lipschitz-like condition in both r/and Y.

Condition II The pair [s(',','),A(.)l satisfies condition II if, for any Y_(-),Y2(') E B2 Y

and r/l('),r/2(') E B2", the perturbation term s[r/(-),Y(.),-]- A(-)r/(-) satisfies the following

Lipschitz-like condition (uniformly in t),

II (s[oi(t), Yl(t),t] - A(t)rh(t)} - {s[r/2(t), Y2(t), t] - A(t)rl_(t)} I11÷_

_< Kill r/x(t)- rj2(t)II1+_+ g_ll Y_(t) - Y2(t)Ih+_ (2.10)

where s : _'_" x _"Y x _ --+ _'_., A E _(,_.x,,.), and Br denotes a ball of radius v in the

appropriate space (see nomenclature) . []

Remark 2 Condition II is applicable even when s(.,-, .) is not differentiable. For example,

s[n(t),Y(t),t] = n(t) + 0.11n(t)t + Y(t), which is not differentiable at r/ = 0, satisfies the

above condition with A(t) = 1. However, a sir/(-), Y(-),.] with a step discontinuity in the

first variable at r/= 0 does not satisfy this Lipschitz-like Condition II for any A(.). []

Next, the linear operator .4 is used to define a contraction, 7_y(-). In particular, Theorem 2

will show that T'y(-) is a contraction and Theorem 3 will show that the fixed point of 7_y,(.) is

a bounded solution to the nonlinear internal dynamics (1.3). Note that, for ease in notation,

Y(.) and Yd(') are represented as Y and )I'd respectively.

Definition 3

Py(r/)(t) _ A[s[rt(.),Y(.),.]-A(.)r](.)](t), (2.11)

"Y "" A(. satisfies Condition I and the conditions of Theorem 1,wherere( .)z Br ,7(')etS_ , )

and Is(.,-, .), A(-)] satisfies condition II. Note that, for ease in notation, r/(.) is represented

by r/whenever the meaning is clear. []

Theorem 2 Let the conditions in Definition 3 be satisfied, and the Lipschitz constants, (Ki, K2),

in Condition II satisfy K_G._ < 1, and K2G.a < 1 - K_G,, where G.4 is the bound on the

gain of the linear operator .4 (see Corollary 1.1). Then, there exists a unique r/_(.) E B_ r,

such that r/_,(t) = Pe[r_,(.)](t).

Proof: From Corollary 1.1 for any Y(-) E B2 r we have

II7_Y(,7)(.)11,+_ < G_ IIs[,7(.),Y(.),.]- m(-)0(-)lll+_

< a._ (K, II,7(')II,+_+K=IIY(')II,+_). (2.12)

Since Y(.) E/3_ Y implies II Y(')II_+_ < r, we have from K2G.4 < 1 - K1G.a, that Py(-) :

B_, --+/3_,. Next, from the definition of 7_y, linearity of .4, Corollary 1.1 and condition II,

we obtain

[I 7_r(rh)(") - 79v(r/2)(") Ill+oo < G.a gl[I rh(') - r/2(')111+oo" (2.13)

GA KI < 1, implies that 79y (.) is a contraction, and the Theorem follows from the Contraction

Mapping Theorem. []
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Remark 3 Equation (2.13) implies that T'y[r/(.)](.) is Lipschitz in 77(-). []

Theorem 3 Let the conditions of Theorem 2 be satisfied, Y(-) E B_ r and Af(Y) =A r/_,(.).

Then (see [3] for an analogous result)

1. Af(.): B2 r --+ B_"NCo and _[Af(Y)l(t) = s[IAf(Y)](t),Y(t),t] a.e. in t E _.

2. lim [A/'(Y)](t)= lim [Af(Y)l(t)= 0
t--+-oo t--_+oo

Proofi Theorem 2 and the Contraction Mapping Theorem implies the existence of a unique

fixed point r/j(-) E B2" such that

o;,(t) = :Pr(¢;,)(t) = A [s[¢;,(.),Y(.),.]- A(.)O;,(.)](t)

K2G.A
II _;,(')II1+o0 < II Y(')IIl+oo (2.14)

- 1 - K1G._

hence r/_,(.) E L1 t3 L¢¢ N C o from which the first assertion of the Theorem follows. Next,

consider the sequence

7°(.) = 0
_7_+'(t) = 79yO?_)(t), (2.15)

which converges to r/_,(.) uniformly in I. The uniform convergence of this sequence, and the
fact that

iim r/_(t)= lim r/_(t)=0
t---_-oo t-++oo

for all n > 0 (by Corollary 1.1), implies the second assertion of the Theorem. O

In particular, the last Theorem shows that r/d(') A__[N'(Yd)](-) = r/_d(" ) is a bounded solution

to the internal dynamics (1.3), i.e.,//a(t) = s[TId(t), Yd(t),t].

3 Computational Issues

Computation of the inverse input-trajectory, Ud(') requires: (a) iterative integrations over an

infinite time window to find [N'()k)](-) (Section 2); and (b) computation of a transformation

S that achieves the dichotomic split (Definition 1), which is also an iterative process ( see

[21], Theorem 2 and Theorem 3). In this Section we show that it is possible to compute

with a single iterative process, an approximate inverse input-trajectory, rid('), and establish

bounds on the error, II'_d(')- uriC')I1,+¢¢-

3.1 Errors due to truncations and finite iterations

In the last Section, we found a bounded solution to the internal dynamics (1.3) by iteratively

finding the fixed point of the contraction T)y_(.). Each step in the iterative procedure required

computations over the whole real line. Here we truncate P),_(.), to the compact interval

I-T, T] and thus define a new operator T_y_.T(.). In the following, we begin with a general

output trajectory Y(-).



.nyDefinition 4 Let the conditions in Definition 3 be satisfied, v(.) E L1 O Loo, Y(.) E Br ,
and T E _. Then

.AT(V)(I) A S(t) f:r W,(t)W;"O')S,(r)v(T)d_ ],_ f r W.(t)W:'(T) S.(_'),,(7")d_"

for all t E [-T, T]

0 otherwise,

*_.,r(_)(t) A .4r[s[o(.),Y(.),.]-A(-b(.)](t)

with S, S,, S_, W,, W_, as in Definition 2 . []

The following Theorem will establish that the above truncated map, 7_y,T('), is also a con-

traction. The goal is to show that. for a given Y(.), the fixed point of the truncated map is

close to the fixed point of the original map, "Py(.).

Theorem 4 If G._, the bound on the gain of the linear operator A K1 and K2 are suffi-

ciently small then there exists rl[..r (.), a unique fixed point of "PY,T('). Further, the sequence

{rly, r,m(. )} :=o, defined by

,_'.r.o(') A 0

,/r.r.,,,+t(t) A :PV.T(rlY, r,_)(t) (3.1)

converges to r/_.T(- ) in the II"11,+_ ._,,._e (as m increases).

Proof: This follows from arguments similar to those in the proof of Theorem 3. D

The following lemma establishes that T'_ (,1)(-) = lira T_y,T(r/)(.), in the I]" IIl+oo sense.

Lemma 1 Let r;(.) E B2". Then iimr..._ [I JgY(r])(") -- "PY,T(r])(") I1,+ = 0

Proof: We first show that

lira It_,(,J}(-)-7_Y.T(W)(-)I1_

For ease in terminology we will u,,_" the following notations

._(t)

%(t,_-)

_,,(t,r)

=0.

A= s[rl(t),Y(t),t]- A(t)_?(t)
A vt;(t)w:'(T)s,O-).r(_)
A= w,_(t)w_(r)S,(r)7(r).



Then from Definitions 2,3 and 4, we obtain

II_)r(_)(')- _'r,r(,7)(')II, =
t-T

___ II_4(-r)(t)- .zb(-r)(t)IIldt

+/-r IIA(-y)(t)- Ar(-r)(t)II,dt

f( II.a(.r)(t) - .,4T(7)(t)Iladt+

We illustrate the proof technique for only one of the terms. The rest of the proof follows

from similar algebraic manipulations. From Definition 2 and Definition 4,

IIA(-y)(t) - AT(_)(t)Ila(dt) _< ooIIS(t)Ila ooII7o(t,T)IlxdTdt

+ f__r IIS(t)IIx/;_ II"r_(t,r)Ilad_-dt

For the first term on the r.h.s, apply inequalities, (2.7), (2.8) and (2.9) to obtain

_oIIs(t)II1 _ II"r,(t,r)I[,drdt < N, N2K e-(°-')(t-')ll "r(r) I[ldrdt
--00 O0

- e-{°-')('-')l[ 7(r)[[ldtd'r

_ N,N,Kf_-T[:_'(o-')(T+,)]In
Or--(

Since r < -T, and a - e > 0, we have 0 < e {a-c)CT+r) < 1 and hence

/T i /II s(t)ll, II %(t.r)ll,drdt <_ N, N2K -Too oo _ - _ I1_(_)II,dr.
O0

This tends to 0 as T -+ cx) if'_(-) ELl. which follows from the definition of-)'(.), Condition II,

r/(.) E L1 tq L¢¢ and Y(-) E Ln t3 L_. Similarly, the other terms also tend to zero as T --_ c_.

The key is to rewrite them, either as integrals from -o¢ to -T, or as integrals from T to oo

and then show that the integrals go to zero as T tends to infinity.

Next we show that limT-.,oo II7:'r(,1)(t) - "Pr.T(rl)(t ) IIoo= 0, uniformly in t. We split the

proof into three parts: (a) t < -T; (b) -T < t < T; and (c) T < t. We illustrate the proof
technique for case t < -T only. For t < -T

II7:'v(,7)(t)- 7:'v.r(,7)(t)I1= _< II_v(,7)(t) - _'v.r(,7)(t)II1
= II _(-r)(t)- Ar(7)(t)II1

-< IIs(t)111+oo(f--'ooII-r,(t,_-)d_-II,+ ,)(( II-r_(t,_)d_ II1)



"r E L1 implies that the r.h.s tends to 0 as T --_ _ independent of t, and hence l.h.s tends to

zero uniformly in t. The other two cases, when t > -T, can be proved by similar arguments.

Thus, the limit is established in the [] • ][1 and in the ][ • ][oo norms, which completes the

proof. D

The next Lemma states that T/_,T(-), the fixed point of the truncated operator "PY,T('), tends

to q_,(.), the fixed point of the operator 7_r(.), as T _ c¢

(see [201, page 7, for a related Theorem).

Lemma 2 For all el > 0 there exists T](el) such that T > Tl(e_) implies that

[I@,r() - @()I1,+_ < _1.

Proof:

<

using the triangle inequality. Next, using the Lipschitz property of 79y(.) we obtain (see

Remark 3)

II@T() --@()I1,+_ <_ K,C.,II@,r(') --@(')I1,+_

+11

II@,T(')--@()I1,+_ _<
1

Note, from Lemma 1, we have "PY(0;'.T) = lim T'g,r(r/_',r), and hence the right hand side

can be made arbitrarily small by choosing T large enough. []

The next Theorem gives the main result that, the inverse trajectory can be approximated (ar-

bitrarily closely) by choosing a large enough time window for computations in each iteration

and by using a sufficiently large number of iterations.

Theorem 5 Given e > 0 there exists M,T" such that m > M, T > T* implies that

I[ rid(') -- Ud(')IIx+oo <--_, where Ud is defined by equation (1.4) and the approximate inverse-

input ud(') is defined as

_,_(t) _ [Z[¢_(t),,_.,_,,_(t),t]]-_ [y_)(t)- .[Y_(t),_.,_,_(t),t]]. (3.2)

10



Proof: Lemma 2 and the convergence of sequence r_,,r,,_(.) (see equation (3.1)) imply that

[I rtrd,T,,,,(') -- r/_(-)][1+oo can be made arbitrarily small by choosing T and m large enough.

The Theorem follows from the continuity of fi(t) in r/(t). []

Summarizing, given an e > 0, rid(') can be computed through a finite number (m) of iterative

integrations performed over a closed time interval [-T*, T'], such that ]1rid(') - ua(.)I[1+oo <

e. This bound, e, can be made arbitrarily small by increasing T ° and m.

3.2 Computation of S(.)

Given a nonlinear time-varying internal dynamics,//(t) = s[r/(t), Y(t),t], the key is to find a

pair (A(-), S(-)) such that: (a) s[r/(t), Y(t),t] - Arl(t ) satisfies the Lipschitz-like Condition II;

and (b) the change of variables r/(t) = S(t)w(t) achieves the dichotomic split of the linear

equation//(t) = A(t)rl(t ). The existence of the block-diagonalizing transformation S(t) has

been studied in [21], however, the computation of the transformation is iterative. Below, we

present a modified algorithm that circumvents the iteration.

Algorithm for S(-) [Coppel]

1. Choose h,(.) (not necessarily = _s) such that; (a) II fi'(t) IIl+oo is bounded, and slowly

varying; and (b) s[r/(t), Y(t), t] - Art(t ) satisfies the Lipschitz-like Condition II.

2. Compute the projection operator (onto the stable subspace of .4(t))

P(t) A _ [M- A(t)]-'dA,

where 3' is the simple closed curve in the left half plane formed by the imaginary axis

and part of the circle IAI > II "411 (see [21], page 511)

3. solve the first order linear ordinary differential equation ([21], page 513)

(;(t) = [[:'(t)P(t)- P(t)P(t)]U(t); U(O)= I,

4. and compute S(t) _ U(t)R-l(t) with

n(t) £x [P(O)U'(t)U(t)P(O) + {I- P(O)}U'(t)U(t){I- P(0)}] '/2 .

This S(t) cannot be used to decouple A(t), although such a decoupling transformation

can be found using the iterative algorithm in ([21], see Theorem 2). Instead, we choose

an alternate A(.) matrix.

5. Choose A(t) £x .4(t) + ._(t)S-'(t) []

It follows from Coppel ([21] Theorem 3) that: (a) S(.) decomposes A(.) as in Theorem 1;

and (b)II S(t)S-l(t)II,+o is proportional to the II This proportional dependence

implies that A(-) also satisfies the Lipschitz-like Condition II. (if it is satisfied by a slowly-

varying Ai.)). This concludes the algorithm to compute the dichotomic split of the linearized

internal dynamics.

11



4 Conclusions

In this paper we have defined a new method for inverting nonlinear nonminimum-phase

time-varying systems, and have presented a constructive algorithm for computing inverse

trajectories. The inverse trajectories form the basis of a new exact output tracking controller.

Since the noncausal inverses decay to zero exponentially in negative time, truncation is

attractive and was analyzed - all the desirable continuity properties of the truncation were

shown to hold.
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Nomenclature
If x(.) (also denoted by x)is a vector valued function with x(t) -- [xl(t) x_(t) xs(t).., x,_(t)] T

i.e., x(t) E _", then [I x(t)[[1 _ Ei=] ' Ixi(t)l is the standard 1-norm in _", II z(t)I[oo _ max, Ixi(t)[

is the standard cx_-norm in _'_, and [[ x(t)[[,+o_ _ [[ x(t)[[, + H x(t)[[oo.

If z(t) E N"×" is a matrix then [[ z(t)I[1 is the induced 1-norm,

[[ z(t)][oo is the induced oo-norm, I[ z(t)[Io_ & sups#0, ye_" [[ z(t) Y][oo/[[ Y I[oo,

and IIz(t)II,+_lXll z(t)IIx + IIz(t)I1_
If x(-) (also denoted by z) is a vector valued measurable function, then

IIx II,_ IIx(.)II1 _ E_ IIz(t)II,dt,
IIx IIo__ IIx()I1_o& esssup,_ IIz(t)I1_, and
IIx(.)I1,÷_=11_(')I1_+ IIx(-)II_,

Y(.) E B_ Y implies Y(t) E _"Y and II Y(')I1_÷_ < r.

r/(.) E B_" implies r/(t) E _" and I1 _(')I1_÷_ < r.
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I. Introduction

IVEN a desired output trajectory, inversion-based techniques
find input-state trajectories required to exactly track the

output. 1.2These inversion-based techniques have been successfully

applied to the endpoint tracking control of multijoint flexible ma-
nipulators in Ref. 3 and to aircraft control in Ref. 4. The specified

output trajectory uniquely determines the required input and state
trajectories that are found through inversion. These input-state tra-

jectories exactly track the desired output; however, they might not

meet acceptable performance requirements. For example, during
slewing maneuvers of flexible structures, the structural deforma-

tions, which depend on the required state trajectories, may be unac-

ceptably large. Further, the required inputs might cause actuator sat-
uration during an exact tracking maneuver, for example, in the flight

control of conventional takeoff and landing aircraft, s In such situ-

ations, a compromise is desired between the tracking requirement

and other goals such as reduction of internal vibrations and preven-
tion of actuator saturation; the desired output trajectory needs to be

redesigned.

Here, we pose the trajectory redesign problem as an optimization
of a general quadratic cost function and solve it in the context of

linear systems. The solution is obtained as an off-line prefilter of the
desired output trajectory. An advantage of our technique is that the

prefilter is independent of the particular trajectory. The prefilter can

therefore be precomputed, which is a major advantage over other

optimization approaches (see Ref. 6 for further references).
Previous works have addressed the issue of preshaping inputs

to minimize residual and in-maneuver vibrations for flexible struc-

tures; see, for example, Refs. 6 and 7. Since the command preshap-

.ing is computed offline, in Ref. 8, the use of noncausal prefilters has

been suggestedbsuch noncausality is allowable since the command
preshaping is computed off-line. Further, minimization of optimal
quadratic cost functions has also been previously used to preshape

command inputs for disturbance rejection in Ref. 9. All of these ap-

proaches are applicable when the inputs to the systems are known a

priori. Typically, outputs (not inputs) are specified in tracking prob-
lems, and hence the input trajectories have to be computed. The

inputs to the system are, however, difficult to determine for non-

minimum phase systems like flexible structures. One approach 1o
solve this problem is to 1) choose a tracking controller (the de-

sired output trajectory is now an input to the closed-loop system)

and 2) redesign this input to the closed-loop system. Thus, we ef-
fectively perform output redesign. 6 These redesigns are, however,

dependent on the choice of the tracking controllers, l° Thus, the
controller optimization and trajectory redesign problems become

coupled; this coupled optimization is still an open problem. In con-

trast, we decouple the trajectory redesign problem from the choice

of feedback-based tracking controller. It is noted that our approach

remains valid when a particular tracking controller is chosen. In
addition, the formulation of our problem not only allows for the
minimization of residual vibrations as in available techniques 6 but

also allows for the optimal reduction of vibrations during the ma-
neuver, e.g., the altitude control of flexible spacecraft. 9 We begin by

formulating the optimal output trajectory redesign problem and then
solve it in the context of general linear systems. This theory is then

applied to an example flexible structure, and simulation results are

provided.

Received April 22, 1996; revision received May 30, 1996; accepted for
publication May 30, 1996. Copyright © 1996 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved.

*Assistant Professor, Department of Mechanical Engineering. Member
AIAA.

II. Problem Formulation

System Inversion for Exact Tracking
Consider a square system described by

Jc = Ax + Bu; y = Cx

where x _ ._", u _ _P, and y _ fliP. The inversion approach'- finds

a bounded input-state trajectory that satisfies the preceding system

equations and yields the exact desired output, i.e.,

Jc_r = Ax_r+ Bull; y_ = Cx,:f

The inverse input-state trajectories can be described in terms of
Fourier transforms as 1._

uff(j_o) = [C(joM - A)-l B]-Iya(jw) = G;l(jo_)ya(j¢o) (I)

xrcf(jcv) = [(jogl - A) -I B]uH(jco) = G_ (joJ)uff(joJ)

This Fourier-based inversion approach has been extended to non-
linear time-varying nonminimum phase systems in Ref. 2; however,

we restrict our discussion to linear tlme-invariant systems.

Remark_ We note two results. One, an inverse exists if the output
and a certain nu tuber of its time derivatives are bounded. The number

of time derivatives of the output that needs to be specified for an

inverse to exist is well defined and depends on the relative degree of
the system, z 12 Second, for linear hyperbolic systems, if the inverse

exists, then it is unique) '2

Performance Criterion

Trajectory redesign seeks a compromise between the goal of
tracking the desired trajectory and other goals such as reducing

the magnitude of input and vibrations. We formulate this redesign

problem as the minimization of a quadratic cost function of the type

o¢{ u(t)r Ru(t) x Qxx(t)(t) r+

O0

+ [y(t) - ya(t)]rQy[y(t) - ya(t)]} dt

where R, Q_, and Qy represent the weight on control input, states,
and the error in output tracking, respectively.

Using Parseval's theorem, we rewrite our optimization problem
in frequency domain as the minimization of the cost function

f=lJ = u(jw)*Ru(j¢o) + x(jw)*Qxx(jw)

+ [y(jw) - y,_(jw)]* Qy[y(jw) - ya(jw)]} dw (2)

where the superscript * denotes complex conjugate transpose.

Optimal Redesign of the Output
Our main result is given by the following lemma, which shows that

the optimal output trajectory redesign can be described as a prefilter,

which maps desired output trajectories Ya to the redesigned output

trajectory Yow This prefilter (7/does not depend on the particular
choice of desired trajectory and hence can be precomputed.

Lemma. The modified output trajectory Yoptis given by yopt(jo)) =

G/(jw)yd(jw), where

G/(jw) = 1 - Gv[R + G*,axGx + G_QyGy] -I

× [e+
The modified input trajectory Uort is given by u_,t(jw) = u H (jw) +
v_(j_o), where Vopt(joJ) = Go(j_o)ya(jw) and

G_(joJ) = -(R + GxQ_G_ + GyQyG,)-'

x (R + G_,Q,G,)G;' (3)

Note that the dependence on jw is not explicitly written for com-
pactness.

Proof. Without loss of generality, we rewrite the input u as the

sum of the feedforward input, G; l ya, found from inversion of the
desired trajectory, and an arbitrary v:

u(jw) = uf/(jw) + o(j¢o) = G_i(joJ)ya(j¢o) + v(j¢o) (4)

Substituting x(jw)=G_(jw)u(jo_) and y(jw) = Gr(jw)u(jw)

along with the preceding Eq. (4) for u into the cost function given
by Eq. (2), we obtain
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O0

* -I:= + +c:Q c,+c,Q,G,)
o0

× (R + cz_.c.)C;_y,]" • (R + cZ_.ox + C;Q,G,)

× [_,+ (R+ GZQ,G,+ G;Q,G,)-'

×(R+ ]+(c;'y4"[(R+o:e,c,)

+ (R + G:Q,,G:,)" * (R + G':,Q;,Gx + G'yQ),G.O -_

× + dw
Note that the cost function is quadratic in v. Therefore, the cost
function is minimized by setting this quadratic term to zero, i.e.,

choosing v(jco) = vor,(jw ) = G,,(jw)ya(jw), where G, is defined

by Eq. (3) in the lemma. The choice of v = Vov defines the optimal

input uo 0, through Eq. (4) as

uopt(j(o) = [G_"(j_o) + O.fj_)]ya(j(o) (5)

The result follows from yo_(](o) = G_ (jw)u_(jco) = [ I + G_ (j<o)
G_(jw)]yd(j(o).

HI. Example

Consider a flexible structure consisting of two freely rotating
disks connected by a thin shaft. A motor is attached between the

connecting shaft and one of the disks. Input to the system is torque

r provided by a dc motor, and the outputs are the angular rotations of

the two disks 0_ and 02. These angular rotations are measured using

potentiometers. The transfer function of an experimental system,
which includes the rigid-body mode and one flexible mode, was

obtained using a HP3562A Dynamic Signal Analyzer as

01 1.8139s 2 + 0.3077s + 6.1041
-- =

z s4 + 0,276583 + 6.1041s 2
(6)

82 0.27s 2 -- 0.1187s + 6.1041

r s 4 + 0.2765s 3 + 6.104ls 2

With the state vector x chosen as x = [0t 02 01 02] T, the system

equations can be represented in state-space form as ,_ = Ax + Bu,
i.e.,

d 02 -3.1555 3.1555 0.3 45

d'-_ #, = 0 0

#2 2.8956 -2.8956 -0.11241

1

-0.1640

0

-0.0899

02 1. 39

6, + r

#_ L 0.27 j

15

with y = 02 = [0 1 0 0]x. The control objective is to track the

angular rotation 02 of the disk that is farthest away from the motor
(see Fig. 1 for the desired output trajectory).

The relative degree of a single-input/single-output linear system

is the number of zeros at infinity) 2 For our system, with the torque
as input and 02 as output, the transfer function has four poles and

two finite zeros [see Eq. (6)]. Thus, the number of zeros at infinity

are two, and hence the relative degree is two. This implies that the
second derivative of the desired output, i.e., the desired angular

acceleration profile of the output, uniquely determines the required
input-state trajectory and the resulting structural vibration, 0t - 02.2

If the internal vibrations are to be reduced, then we have to relax the

exact tracking requirement. Similarly, to reduce the required input
amplitudes we have to compromise exact tracking. This tradeoff

can be represented as the minimization of a general quadratic cost
function (Sec. II) of the form

foe {u(t)r Ru(t) + x(t)r Q_x(t)
O0

+ [y(t) -- ya(t)] r Qr[y(t) - y,t(t)] } dt

where R = r, Qr = q_, and

Q_ = q_ -I 1 0
0 0 0

0 0 0

The scalars r, qx, and qv represent the relative weight on the re-
duction of inputs, structural vibrations, and tracking errors, respec-

tively. To reduce the vibrations and control inputs, we choose r = I,

q_, = 5000, and qy = 1 in our simulations. Figure ] shows the modi-
fication for a desired trajectory_ about 10% of the final slew angle.

The maximum magnitude of the required input, however, is reduced

by 60%, and the corresponding structural vibration, 0j - 02, is re-
duced by 20% (compared with results from exact tracking of the

initial desired trajectory).

IV. Conclusion

We formulated and solved the trajectory redesign problem in the

context of linear invertible systems, including nonminimum phase
systems. Thus. we provide a systematic approach to an optimal

tradeoff between tracking desired trajectory and other goals such as

vibration reduction and reduction of required inputs. The approach

was applied to an example flexible structure, and simulation results
were presented. Future work will address trajectory redesign for
nonlinear systems.
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Exact-output tracking theory for systems with parameter jumps

SANTOSH DEVASIAt, BRAD PADEN:_ and CARLO ROSSI§

We consider lhe exact output tracking problem for systems with parameter jmnps.

Necessary and sufficient conditions are derived for the elimination of switching-

introduced output transient. Previous works have studied this problem by devel-

oping a regulator that maintains exact tracking through parameter jumps

(switches). Such techniques are, however, only applicable to minimum-phase sys-

tems. In contrast, our approach is applicable to non-nfinimum-phase systems and it

obtains bounded but possibly non-causal solutions. If the reference trajectories are

generated by an exosystem, then we develop an exact-tracking controller in a feed-

back form. As in standard regulator theory, we obtain a lineal map from the slates

of the exosystem to the desired system state which is defined via a matrix differ-

ential equation. The constant solution of this differential equation provides asymp-

totic tracking, and coincides with the feedback law used in standard regulator

theory. The obtained results are applied to a simple flexible manipulator with

jumps in the pay-load mass.

1. Introduction

We study the exact-output tracking of systems that are described by

5:(t) = A[k(t)]x(t) + B[k(t)]u(t) }v(r) c[k(t)].¥(r) . (1)

where x E JR", with the same number of inputs as outputs u(t), y(t) E [Rp. The system

matrices A (k), B(k) and C(k) are constant over the time intervals la, where k belongs

to a finite index set ,,* & I0,..., N ], and the parameter change (switch) occurs at

times t = tj, t2,.. •, tx (see Fig. 1). Here, the switching times are known, in contrast

to systems where the switches may be signal-driven.

For constant linear systems, asymptotic output-tracking problems have received

much attention in the past. In particular, the regulator theory (Francis 1977, Basile

and Marro 1992, Wonham 1985) provides a general framework in which the asymp-

totic output tracking can be solved when the reference trajectory is generated

through a linear exosystem. In the presence of switches in the system, one technique

for achieving output regulation is to switch the regulator. Note that regulation can

be recovered between two consecutive switches (due to asymptotic properties), espe-

cially if the switching occurs far apart in time. However, this technique also tends to

induce transients in the output during the switches.
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A(O) A(1) A(N.I) A(N)
B(O) B(1) B(N.I) B(N)

C(O), C(1) , C(N-I) C(N) Time__),
to---** It, _2_ _ _ tiN-2,tN-! IN h.T**
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Figure 1. The switching times.

In order to eliminate these switching-caused transients, a regulation scheme

that maintains exact trajectory tracking across system switches must be used. This

fairly new problem has been studied by Marro and Piazzi (1993) for minimum-

phase systems. In this work, a feedforward action is used in conjunction with the

feedback defined by the regulator to cancel the output transients across the
switches.

We propose an alternative approach for exact output-tracking of switched sys-
tems, which is also applicable to non-minimum-phase systems. In the non-minimum-

phase case, a bounded non-causal solution is obtained (Devasia et al. 1996) that

requires preknowledge of the reference trajectory and of all the switching times. Such

exact tracking schemes based on non-causal schemes is useful in problems like

aircraft guidance (Meyer et al. 1995, Hunt et al. 1996).

We present necessary and sufficient conditions for the solvability of the inversion

problem for linear systems with switches: the inverse is used to track the desired

output. We consider two kinds of desired output trajectory: a single pre-specified

trajectory, or one belonging to a class of outputs generated by a given linear exo-

system, that could undergo parameter changes as well. In this latter case, we obtain
the solution in a time-varying feedback form, where the feedback matrix satisfies a

matrix ordinary differential equation. The equilibrium solution of this differential

equation solves the asymptotic output tracking problem, and coincides with the

feedback matrix resulting from the standard regulator. This establishes an interesting

connection between our approach and the traditional regulator theory.

The paper is organized as follows: in § 2 the exact tracking of a single prescribed

output trajectory is considered, and necessary and sufficient conditions are pre-

sented. A geometric version of the obtained conditions is also provided. In § 3 the
case of reference trajectory obtained through a linear exosystem will be treated. The

conditions of the previous section when rearranged establish a close relationship

with the traditional theory of output regulation. Section 4 focuses on the additional

problem of stability of the closed loop system. Finally, § 5 presents the application of

the developed theory to a simple non-minimum-phase switched system, given by a

flexible beam subjected to step variation of the pay-load mass. Conclusions end the

paper.

2. Tracking a prescribed output trajectory

Below we formulate the exact tracking problem for a prescribed output trajec-

tory, and establish necessary and sufficient conditions for its solvability. Geometric

interpretations of these conditions are also provided.
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2.1. The inversion problem

Given a desired output trajectory Yd, find a pair of state and input trajectories Xd

and Ud such that:

(a) Xd and Ud satisfy the system (I):

£(t) = A[k(t)]Xd(t) + B[k(t)]Ud(t), Vt ¢ (-oc,oc) (2)

(h) exact output tracking is achieved (even across switches):

._'d/0 = C[I,'(t)]xd(t), Vt • I-z, _:)

(c) and the inputs and state are bounded:

IjXd(')ll_ < oo

Ilud(')ll_ < oc

2.2. Using the inverse.fbr exact-output tracking

The existence of an inverse (Ud, Xd) implies that there are input-state trajectories

that yield the desired output; exact output tracking is easily achieved by stabilizing

the desired state trajectory. For example, use ud as feedforward and use the error

x xd for feedback (see Fig. 2). Stabilization is not the central issue in this paper,

and any scheme for feedback design can be used. For example, given (A(k), B(k))

controllable for all k, the system may be stabilized through pole placement with all

the closed-loop poles in the same locations for all k.

Note that typically the initial conditions of the system are different from the
initial conditions of the desired state trajectory leading to initial transient errors

typical of all tracking controllers. However, once the desired level of tracking has
been achieved (due to an exponential reduction in error) our technique will maintain

tracking across parameter switches. In contrast, switching standard regulators when

the system parameters change will cause transient errors at the switching instants;

tracking will not be maintained across switches.

2.3. Exact-tracking maintaining input

We will assume the following.

Assumption 1: The ,U,stem A(k). B(k) and C(k) has a well defined vector relative

degree (Isidori 1989).[or each k • _'.

SystemState Trajectory
Tracker Generator

Figure 2. The control scheme.
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Then we can find a coordinate transformation {_k such that (Isidori 1989)

f"kU l=,;kxU =
LZk(t)_!

where

[, 1Yk(t)] 't"f'l'''"dt(rk ,, 1) Yl'Y2'Y2"'"dt(rk.2 1) Y2,'" ,Yp, .fm'", dt(,_.FO Yp

and rk = [rk.l rk,2 ... rk,p] is the system's vector relative degree for tk <<-t <<.tk+l
(where we assume to = -vo). Here C_' maps the system states into the outputs and its

time derivatives and Zp maps the states into the internal dynamics zk.
Note that a necessary condition for exact output tracking in the interval Ik is that

the system state at time tk is such that

Yk(tk) = Yk,d(tk)

In addition, to maintain exact tracking we need to ensure that

Pk(t)= P,,d(t), Vt C Irk,tk+ )

Let

y(rk) = fd('''> d (rk'2) d (_k'p) ]'d Yd,I, _Yd,2,...,dt(rkpl Yd,p

then we can find the following unique control law (provided that Assumption 1 is
satisfied) (Isidori 1989):

ud(t) = FkX(t) + Gky_rk)(t) (3)

such that the time derivative of the output is the same as that of the desired output

trajectory Y0 (this is also a necessary condition for exact output tracking). This exact-

tracking control is completely determined by the state x(tk), and by the desired

output along with its derivatives up to the order rk.

Substituting the control law (3) into (2) we obtain for t EIk:

:_(t) = A.r(k)x(t ) + Bv(k)y_rk)(t) (4)

where Ay(k) = A(k) + B(k)Fk, Bv(k ) = B(k)Gk. In the transformed coordinates the
system equations for t clk are of the form

_Zk(t) = Az(k)Zk(t ) + A:,y(k)rk(t) + Bz(k)y_rk)(t ) _ (5)

Our objective is to define under which conditions it is possible to define a feasible

state trajectory Xd(t) such that exact trajectory tracking is preserved through all the

time intervals. There are two main hurdles. Firstly, the existence of at least a state

trajectory which maintains exact output tracking needs to be determined. This

depends on compatibility of the desired output with the given system. Secondly,

the state trajectories need to be bounded. In systems with unstable internal dynamics

(non-minimum-phase systems) generic solutions tend to be unbounded. In this case,
we need to establish additional conditions for the existence of bounded solutions to

the internal dynamics.
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In this paper we restrict ourselves to the case where: Yk,d, the output along with

its time derivatives, has a compact support [Ti, TU] c (-oc, oc); (b) the switching
occurs within this compact set; and (c) the internal dynamics are hyperbolic before Ti

and after Tt" More formally, we have the following assumption.

Assumption 2: The desired output trajectoo, Yd(') and its time derivatives are

bounded and have compact support S(yd) = [Ti, Tf ]. The switching in the O,stem

parameters are at fixed times tk E (Ti, Tf) for ever), k E [1,..., N].

Assumption 3: The O,stem (1) has hyperbolic internal dynamics, i.e. the eigenvalues

of A:(k) have non-zero real parts (no centres) for k = 0 and k = N. This is

equivalent to requiring that the original system (1) have no zeros which lie on the

imaginao, axis (Isidori 1989)for k = 0 and k = N.

The last assumption implies the existence of transformations Q0 and QN such

that the system state can be partitioned into

Z,k(t) = QkX(t) = | Z_k | x(t) (6)

Zuk ( t) IkZuk jI

where Zsk and Z_k are the coordinates for the stable and the unstable subspaces of the

system's internal dynamics.

2.4. Notations

Towards establishing conditions for the existence of solutions to the exact track-

ing problem for a prescribed output, we first study the dynamic evolution of the

system for a given initial condition.

Given an initial condition in an interval Ik, the system's evolution for

tk <_ t <_ tk+l is described by

xd(t) = exp [Av(k)(t - tk)] xd(tk) + [_
d tk

In a more compact form

where

and

exp [Ay(k)(t - r)] Bv(k)y_rk!O- ) dT

Xd(t) = Cbk(t , tk)xd(tk) + hk(t, tk)

_k(t, tk) = exp [Ay(k)(t - tk)]

fhk(t, tk) = exp [Ay(k)(t - r)] By(k)y_rklO- ) d_"
Ik

The above equations describe the flow in an interval where the system does not

undergo switches. To obtain a representation of the system state in terms of an initial

state that does not belong to the same interval, we define flow compositions as
follows:

tPk,i( t, ti) = @k( t, tk ) o @k-t ( tk, tk-l) o...o @i( ti+t, ti)

k-I

Hk,i(t, ti) = hk(t, tk) + Z _k-14(tk-l' tj)h/(o+l' tj)
j--i
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where

q'i.i(t, ti) = ,t,,(t, ti)

and

Hi.i(t, ti) = hi(t, ti)

The system evolution for an initial condition x(T_) can be rewritten as

x(t) = q'k,0(t, T_)x(r_) + H_.0(t, T_) (7)

2.5. Necessary and sufficient conditions

We first formally state the result.

Lemma 1: Under Assumptions I-3, the exact output tracking problem is solvable

with bounded solution if and only if the system of equations."

(8)

admits a solution in Z_,o(Ti).

Proof: System trajectories outside [Ti, Tf], the compact support of Yd, are

bounded if and only if Z,u, the unstable component of the internal-dynamics, is

zero at the end of the motion Tf and similarly the stable component zs0 is zero

before time 7",..Formally

z_,o( Ti )

[ojx(Tt. ) = O_,l Z._,u(Tf)

0

Substitution of the preceding expressions into (7) computed at t = T/-

x( rf ) = _gu,o( Tf , Ti)x( Ti) + HN,o( Tf , Ti)

gives (9). In addition, exact tracking in every interval Ik is possible if it is possible to

find state trajectories that are continuous and such that C_x(tk) = Yak(tk). By using

(7), that gives the state at t = tk as a function of the initial state and the constraint on

x(Ti), (8) easily follows. []

Equation (8) will be referred in the following as compatibility conditions, and (9)

will be referred to as stability condition. The compatibility conditions ensure that Yd

does not jump across switches (or else unbounded inputs would be required). The

stability condition ensures that the autonomous system dynamics for t _ +oc are
bounded.
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The algebraic conditions expressed by Lemma I can also be interpreted in a

geometric coordinate-free framework. To this end, let

Sa={x: Yk= Yd,k(tk)}, ke[O ..... N]

represents the set of the admissible system states at time tk to achieve exact tracking

in the time interval tk _< t < t_-+l, k>'k is in general a linear variety in the state space

that reduces to a linear subspace (the system internal dynamics) for k = 0.

A necessary condition for achieving exact tracking when t < Ti is x,l(T;) C (_o.

Furthermore, to maintain a bounded solution for all t < 7",-it is necessary that the

initial state belong to the unstable subspace of the system internal dynamics

xd(Ti) • £f ,,.o.

Note that every xd(T;) determines a unique Xd(h ), given by

.Vd(h) = '_0(tl, Ti)xd(T,) + ho(tl, Ti)

Hence, we can define the image of the subspace _'%,o as

_o(tl, to) o _,,,o = {x : x = _bo(tl, t0)y + ho(q, to); y • 5%,0}

which represents the linear variety composed by the points reachable at time t_ with

the constraint ofy(t) - yd(t) for all t • [to, tl).

To maintain exact tracking in the next interval t • [h, t2), it is necessary that

Xd(h) • ZTq. The compatibility condition at time t = tl states that

.Vd(tl) • ff_l N q)o(tl, Ti) o _Pu.O

which is possible if and only if the linear variety

,% = S_ n '/'0(h, 7',.) o _,,,0

is not empty, i.e. if and only if _1 intersects the image of 5(',,.0 under the system flow.
The same procedure can be repeated for the switching time t = t2. Starting from ,(TI,

we can flow forwards in time. To achieve exact tracking in the interval [t2, t3), the

image of/fl must intersect (J'2, i.e. the set

5f 2 = £,0 2 FI 41 (12, tl) o _1

must be not empty and more generally, the exact tracking in t • [Ti, tk+l) is possible

if and only if the image of 3fk 1 under the system flow _k l(tk, tk-l) intersects 3*'k,
i.e. the set

ffk = ,_k N (I)k l(tk, tk 1) o.9°k-t (10)

is non-empty for every k = 1 .... , N. However, to obtain a bounded solution for

t > T r, the final state at time t = "If must belong to the stable subspace of the
system internal dynamics /J'.,,N. Let

Hence, we have proved an analogue of Lemma 1 in geometric terms.

Lemma 2:

empO', i.e.

The exact output tracking problem is soh,ahh" f attd only (f ,srT, is non-

,_/'r, ¢ ;_ (ll)
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As the flow of a linear system is a homeomorphism, the dimension of a linear

variety and that of its image are equal, and hence

dim (J_i) >_ dim (,_j), j _> i

This means that at each iteration (10) the set of possible solutions could reduce at

each K and that no solution is possible if it becomes the empty set for some k, i.e. it is

empty for every j >_ k.

2.6. Switched systems with invariant internal-dynamics subspace

We present below a particular case in which the given conditions considerably

simplify. This exemplifies the obtained results and will be illustrated with an example

in §5.

Assumption 4: The system (1) has constant relative degree r = rk Jor eveo' k, and

matrix C_ = C* is constant.for eveo' k.

It follows from the previous assumption that the coordinates outside the internal

dynamics Yk are the same for every k, and thus the internal dynamics subspace is the

same for every k. Note that the stable and unstable subspaces may still be different,

and may switch around, but are constrained to belong to the same subspace.

As Yk = C'x, the continuity of x implies that the compatibility conditions are

always satisfied.

Lemma 3: If assumption 4 is satisfied, then the compatibi#o, conditions are

sati,_[ied for eveo, smooth enough ( C r) desired output trajectory yd(t).

In addition, q_k(tk+l, tk) o ,9_kC 5_k+l implies that

is non-empty because 0 6 5%. Further dim (Se,_) = dim (SP0,,).

The additional condition for boundedness of solutions for t > 7). is met if and
only if 5£N intersects L_'_,x. The linear variety ,_N can be expressed as

,_u = Im (SN) + v

and the stable subspace of the internal dynamics can be expressed as

_'_.N = Im (L_,,_)

From the previous considerations we have the following lemma.

Lemma 4: If Assumptions 1-4 hold, then the exact output track&g problem with

bounded solution is soh, able (["

rank [SN Lx,,_] = n. (12)

where n, is the dimension o/' the O,stem internal dynamics at t = T t-.

As a last remark in this section, note that if not only do the internal dynamics
subspace remain constant across the switchings, as ensured by Assumption 4, but its

stable and unstable subspaces do too; then the condition (12) is always satisfied and

the problem has a solution for every admissible yd(t). Moreover, this solution is
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unique for every given yd(t). This implies that the exact-tracking problem for a
system without switches is always solvable.

3. Yd given through an exosystem

In this section we consider how the preceding results can be specified when the

reference trajectory is not completely general but is generated through a known
linear exosystem, given by

.i'e : Ae(k)xe_ (13)
y_ Co(k)x_ J

First we solve the tracking problem when the initial state of the exosystem (at time

Ti) is known in advance, hence the obtained result will be valid for the particular

reference trajectory determined by the initial condition. Later, we will extend the

approach to the case of unknown initial conditions. In this case, we look for asymp-

totic tracking of the reference trajectories for arbitrary initial conditions of the
exosystem.

We begin by studying the case where the state of the exosystem xe(T_) is known.
The system equation (4) becomes

._.'d(t) = Ay(k)x(t) + By(k)C*(k)xe(t ) (14)

r_. ) ,%x
with )d t_/ = C_(k)x_(t), because all the time derivatives of the output can be

written in terms of Xe by using (13).
The system evolution can then be rewritten as

where

x(t) = q'k,o(t, L)x(Y,) + Hk,0(t, Ti)Xe(Y,) (15)

where

sl  ,QoI!1
Sn = ZuNI]IN.o( Tf , Ti)

In what is to follow, we will assume that the above equation has a unique

solution (iffsl is invertible). This yields a one-to-one relationship between the plant's
state and the exosystem, as follows:

k-I

j--i

t;k(t, tk) = exp [A._.(k)(t - T)] By(k)C*e(k ) _k,0(r, Ti) dr
tt

and @k,0(r, Ti) is the evolution of the exosystem (analogous to (7)). A solution to the

exact tracking problem exists if Lemma 2 is satisfied. The compatibility condition is

satisfied for all initial conditions .rd(Ti) C _0 if C_e = C*. The stability condition
becomes

0 = Sl-u.0(Ti) + S2Xe(Ti) (16)
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xd( Ti) = Qo 1

= Qo _

0

0

-,,,T,(Ti)

0

0

-sT's2xe(Ti)

_=6(Ti)xe(T_)

What is interesting is that we can also write the desired exact tracking state

trajectory in terms of the exosystem state. By substituting the above expression

into (15) we obtain

xd(t) = c(t)xo(t)

where

G(t) a_ [_k,L(t, Ti)G(ri) + ISIk.r,( t, Ti)C*]gP£1o( N, L)xe(t) (17)

It may be verified that G(t) satisfies the differential equation

(_k( t) = A,,(k )Gk( t) - G'[ ( t)Ae( k ) + C*

In the case of no switching, a constant solution always exists for the above Lyapunov

equation provided that the eigenvalues of the exosystem A_ are different from the

zeros of the plant eigenvalues of A v. The above equation also provides a control
strategy when the exosystem states are not known. We estimate the state of the

exosystem as _?_ and regulate the trajectory -;cd = G(t).;ce. The stability of such a
controller is studied in the next section.

4. Stabilization

If the state of the exosystem x e is not known, then we could estimate it as _¢,'ewith

I[x_(t) - ._e(t)]12 _< Ke e'_Jl[Xe(0) - ._e(0)112. We use .?d(t) = G(t)/%(t) as the estimated
desired state trajectory, and stabilize this trajectory by using the control scheme

shown in Fig. 3. Note that the feedforward used (see (3)) is completely specified in

terms of the exosystem's state estimate, as follows:

U .,(r_,)¢,_
ud = &,lxd(t) +,k,2_ _'J

= FkjG(t).¢Ce(t ) + rk,2C*eeXe(t)

_=gk.e_(t)

The state equations are of the form

J; = Akx + Bk(rkke + K(x - G(t)._Ce) )

We require that the system in each interval is either stable or stabilizable. For

simplicity, we assume that A(k) + B(k)K is Hurwitz for all k; the arguments remain

valid if the system is stabilized through any other feedback control scheme.

The desired trajectory satisfies

.;ca = AkXd + BkFkXe



Exact-output tracking theory for systems with parameter jumps 127

A

Ud,

(

Exosystem
+

Observer

--_< _e

r +

_+
X=AkX+Bk u

y=Ckx

feedback

Figure 3. Trajectory tracking with exosystem.

Let e := x - xa. Then the difference between the last two equations yields

b = (Ak + BkK)e + (Bkrk + BkKO(t))(.ie - Xe)

The exponential stability of the error dynamics system follows from the next lemma.

Lemma 5: Given the system b = Ae + v(t), where Ki e '_' < lie Atl[2 < K2 e "2t and

IIv(t)][2 < K3e -'_t, with KI, K2, K3 positive, then e = 0 is an exponentially stable

equilibrium point, provided that a3 > _:2 > 0.

Proof: Using the variation of constants formula

,,e-Ate(t),,2<_ e(0)+Itoe-A_v(r)dT 2

_< Ile(0)l12 + /i e A_v(r) dr 2

J2_< Ile(0)l[z + I[e-A'v(r)H2 dr

I'_< Ile(O)lh + K2K3 e'':-'_ dr
0

1
_< Ile(0)l12 + K2K3--

(_3 -- (_2

provided that c_3 > c_2. Hence

1
Kl II&"e(t)ll2 _ Ile-me(t)ll2 _ ]le(0)[t2 + K2K3 --

O_3 -- O_ 2
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the right-hand side being a constant. Therefore, for all E > 0 there exists a positive
constant K such that

Ile(/)l12 < ge -(°_-')

5. Example

Consider the flexible structure, cantilevered at the base and free at the top, shown

in Fig. 4. It is modelled (with the finite-element method) with a single flexural ele-

ment. The degrees of freedom are the translational motion at the base Xl, and the top

x2, and the rotation at the top x3. The input is a translational force at the base and

the system output is x2. The structure is loaded with a mass rot, which is changed at

several instances. The flexural element has the following properties: mass 420;

length 1; elastic modulus 1; and cross-sectional area moment of inertia 1. The objec-
tive is to maintain the top of the structure along a prescribed trajectory to facilitate

the transfer of the load. The equations of motion can be described by

M2 + Sx = Bu

where

[15654l!] [1212i]M= 54 156+m t -2 , S= -12 12 -

-13 -22 6 -6

x3]', and/_ = [1 0 0]'.X _ [X 1 X 2

In the standard form x = [x' 2']' (abuse of notation) we have the dynamics as

Jr = AkX + Bku

Yk = CkX
where

E0 ,] [ 0]Ak=-M-IS 0' Bk= M IB, Ck = [0 1 0 0 0 0]

x2

x3

xl _ u

Figure 4. Example.
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The desired trajectory is generated by an exosystem of the form .i e = Aex_, where

M e

-1 0 0

0 1 0

0 0 1

and the desired output is l,d = [0 0 0 1].V__ C_X_. We also switch the exosystem to

A_ = 04_ at the initial and final times Ti =0and T, 2pi. The first two states of the
exosystem form an oscillator and the second state is then integrated twice to obtain

the desired output. Note that (Ae, Ce) is observable. Hence the exosystem states can

be estimated. In our simulations we ensure that the output trajectories have a

compact support [0,2rr] by choosing initial conditions of the exosystem of the

form x_(T,) = [0; *;0;01.

We also switch the mass m_ on the structure (see Fig. 4) to take the values m_ = 0.

Vt E [0, 7r/2], mr = 100, Vt E (re/2, 1.57r], and m_ = 10, Vt E (1.57r, 2,-r], which denotes

the jumps in the system. Note that (_ remains constant through the switches and

hence the compatibility conditions are always satisfied. As illustrated in § 3, the map
G(O) : x_(Ti) _ Xd(_) is given as

-4.6715

0

6.9406
a(0)

-0.5935

0

2.6851

-3-3239 0 0

0 0 1

2.6672 0 0

-1.4710 0 0

0 1 0

-0.8211 0 0

As an example we simulate the forward dynamics with the initial condition for the
exosystem as [0 1 0 0]'. The corresponding initial system state for exact output

tracking is

Xd(f_) = [--3"3239 0 2"6672 - 1"471 0 -- 0"8211]'

The simulation results are shown in Fig. 5, where the exact tracking state trajec-

tory is shown; this desired state trajectory yields the desired output with an error of
10 6 for a motion of two units. This error is believed to be due to the numerical

integration schemes. Furthermore, the initial conditions are large and unrealistic.

The initial conditions of the system are typically not the same as the initial conditions
of the desired state trajectory; this results in initial transient errors. If the system is

stabilized then these errors decay exponentially, even if the system dynamics has

switches. This ability to maintain tracking across switches is a major advantage of

our approach. Furthermore, preactuation techniques to achieve these initial condi-

tions (with output error maintained at zero) has been developed by Devasia et al.

(1996) and we expect to integrate the two approaches in the future.

6. Conclusions

The problem of achieving exact output tracking for linear systems that present
jumps in a parameter's values has been analysed. We have established necessary

and sufficient conditions for the existence of exact output-tracking bounded state

trajectories. When the reference trajectory is generated through an exosystem, the
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Simulation results.

feedforward action needed to maintain exact tracking can be written as a time-

varying feedback. Furthermore, this time-varying feedback is related to a map

from the state of the exosystem to the desired system state. The map is linear and

is shown to satisfy an ordinary differential equation. For the case of systems without

switches the presented theory reduces to the standard regulator theory. We also

showed that the desired trajectory can be stabilized and presented the simulation

results for an example flexible structure with switching mass.

Future work will attempt to remove the requirement of compact support for the

output. There is also a need to address the tracking problem for systems whose

internal dynamics may not be hyperbolic.
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